Project 6 Grading Guide

	Item #.
	Description
	Correctness
	Style

	PROBLEM A
	Room.m
	Total = 29
	Total = 6

	1
	Room constructor:
-Initializes a room object with fields set to the 7 actual parameters only if 7 arguments are given (1C).
-Else, sets the 7 properties to be reasonable default values, e.g. -1, 0, etc. (1S).
-Also sets playerVisited to 0 (1C).
	2
	1

	2
	getLoc() returns x- and y-coordinates of current room
	1
	

	3
	getID() returns room's private ID number
	1
	

	4
	isHazardous() returns 1 if room is hazardous, 0 otherwise
	1
	

	5
	applyHazard():
-Calls decreaseHealth if hazardID = 1 (1C),
-and poisons the player if hazardID=2 (1C).
-Uses the hazardAmount constant instead of a hardcoded value, e.g. 20 (1S)
	2
	1

	
	Character.m
	
	

	6
	Character constructor:
-Initalizes a character object with the room property set to startRoom if nargin == 1 (1C).
-If nargin ~= 1, sets the room property to be a default Room object using Room() (1S).
	1
	1

	7
	moveCharacter() method:
-Creates new x- and y-coordinates by adding dx and dy to self.room.xCoord and self.room.yCoord, respectively (1C).

-Gets new room by referencing an existing room in roomArr, e.g. via roomArr(newX,newY) or equivalent (1C).

NOTE: Do NOT take points off if the students don’t adjust self.room in moveCharacter but correctly set it in Player’s and Monster’s methods.
	2
	

	
	Player.m
	
	

	8
	Player constructor:
-Calls superclass constructor via @Character(startRoom) (1C).
-Sets player's health, poisonHit, and poisonEscape properties to be the given arguments and also sets playerInRoom property of startRoom to be 1 (1C).
-Sets health, poisonHit, and poisonEscape to be reasonable default values if 4 arguments not given (1S).
	2
	1

	9
	getHealth() returns value of player's health property (1 point).
	1
	

	10
	decreaseHealth() sets player's health to be health-damage (1 point)
	1
	

	11
	checkPoison() returns value of player's poisoned property (1 point)
	1
	

	12
	move() method:
-Only proceeds if health > 0 (1C).
-Calls superclass' moveCharacter() method with correct arguments, and also sets playerInRoom and playerVisited to both be 1 (1C).
-Poison handling (2C):
 -(a) checking if player is poisoned and decreasing health if so,
 -(b) determining whether player can escape from poison using a random number,
 -(c) checking if new room is hazardous and applying hazards if so;

*award 1 out of the 2 points if any of (a), (b), (c) is missing.
	4
	

	
	Monster.m
	
	

	13
	Monster constructor:
-Sets monsterInRoom property of startRoom to 1 (1C)
-Calls superclass constructor via @Character(startRoom) (1C).
	2
	

	14
	moveToAttack() method:
-Correctly finds minimizing point in x & y direction (2C):
 *Can be done with two for loop method or with comparing the coordinates
-Calls moveCharacter correctly (1C)
-Updates monsterInRoom (1C)
	4
	

	15
	moveToProtect() method (same as above):
-Correctly finds minimizing point in x & y direction (2C):
 *Can be done with two for loop method or with comparing the coordinates
 *ALSO, two values are correct here, the point minimizing the average distance between the exit and the player, and the exit itself as said in solutions
-Calls moveCharacter correctly (1C)
-Updates monsterInRoom (1C)
NOTE: If the students only minimize the distance between the monster and the exit, points should not be taken off as it’s specified in the rubric.
	4
	

	
	General Style
	
	

	16
	Does not change the draw() or removeDrawing() methods in the Room, Player and Monster classes. Does not change/add any properties in any class or change the accessibility of any properties/methods in any class. Does not modify Game class at all. (2S, all or nothing)
	
	2

	PROBLEM 2
	RandomMondrian.m
	Total = 7
	Total =
 3

	17
	Use variables (pHalt, MyColors and bWidth) to represent the parameters and initialize them at the beginning of the function.
	
	1

	18
	The termination condition of recursion is level == 0 || rand < pHalt. (2C, 1C for each of the conditions)
	2
	

	19
	Pick a random color in the color map.
	
	1

	20
	Use fill to fill the rectangle with the random color.
	1
	

	21
	Use plot to draw the border lines.
	1
	

	22
	Randomly pick a partitioning point in the rectangle (1C). When generating the random point, there should be some constraint that the point is not too near the edge of the input rectangle. (1S)

	1
	1

	23
	Recursively call RandomMondrian to partition the four small rectangles using correct input arguments. (2C, -1C for each mistake)
	2
	

	GENERAL
	
	
	Total=10

	G1
	Script starts with a concise comment describing the program.
Function comment follows function header.
	
	1

	G2
	Code is sufficiently (but not excessively) commented.
	
	1

	G3
	Line lengths are not excessively long (80 columns).
NOTE: It's ok if a couple lines are a little too long, especially if it’s due to having to print a very long string.
	
	1

	G4
	No extra output (debugging output) produced
	
	1

	G5
	Proper indentation is always used.
	
	1

	G6
	Use meaningful variable names. Do not overwrite MATLAB keywords.
	
	1

	G7
	Name important parameters as variables (constants).
	
	1

	G8
	No superfluous code (e.g., an empty if or else branch or a useless loop). Of course some students will have code that is awkward or unclear or inefficient. This point is specifically for not having code that does literally nothing.
	
	1

	G9
	Reasonably efficient code.
	
	1

	G10
	Does NOT put semicolon at wrong places, e.g., at the end of these lines: "if", "elseif", "else"," for","while", "function".
	
	1

	TOTAL
	
	36
	19

Penalties

	P1
	Student's code does not execute (or student provides a script when a function is required and vice-versa)
	-1 from final score

	P2
	Student's code crashes or does not terminate (infinite loop) for normal cases.
	-1 from final score

	P3
	All function headers and file names match those specified in the project description exactly. All input and output variables should be of the correct type.
	-1 from final score

Grade Calculation

	Total Possible Correctness Points
	TC = 36

	Total Possible Style Points
	TS = 19

	Student Correctness Points
	C = min(___ + 1 freebie point, TC)

	Student Style Points
	S = min(___ + 1 freebie point, TS)

Exceptions: If any file is missing/unacceptable, no freebie points can be applied to that file and subtract 3 style points for each missing/unacceptable file.

	Student’s final score
	([(C/TC)+(S/TS)] X 5) - Penalties

(Out of 10; 1 decimal; no negative score; round to NEAREST)

