[bookmark: _GoBack]Project 5 Grading Guide


	Item #.
	Description
	Correctness
	Style 

	
	mailMerge
	Total = 12
	Total = 6

	1
	readSender, readRecipients, File2Cell and readZIP should be used to read the files named in the arguments (1S, all or nothing).
	
	1

	2
	findZIP is called to find the city information for the sender and recipient (1S) with the first 5 digits of their respective ZIP codes (1C).
	1
	1

	3
	If the sender ZIP code is not found, an empty cell array should be returned (1C) and the following message is displayed (1S):
‘Sender ZIP code ([5-digit ZIP code]) does not exist.’
	1
	1

	4
	If a recipient ZIP code is not found, its letter should be skipped (1C) and the following message is displayed (1S):
‘Recipient ZIP code ([5-digit ZIP code]) does not exist.’
	1
	1

	5
	Exactly one letter is generated for each recipient (1C).
	1
	

	6
	Substitutions are made to every placeholder in the template, even if multiple placeholders appear on the same line (2C, -1 for each mistake).
	2
	

	7
	The correct fields are used when substituting placeholders (2C, -1 for each mistake). The %sender% and %recipient% substitutions are correctly formatted as multi-line addresses (1S).
NOTE: The %% placeholder should be substituted with %. Failure to do so or stating %% is undefined is a single mistake.
	2
	1

	8
	If an undefined placeholder is found, it is substituted with ‘??’ (1C) and the following message is displayed (1S):
‘Undefined placeholder: [placeholder name].’
	1
	1

	9
	Parts of the template that are not placeholders should be copied exactly into the new letters (1C). Line-breaks in the letters should match those in the template (1C).
	2
	

	10
	All generated letters are returned in a cell array, with each cell containing a single string that is the whole letter (1C).
	1
	

	
	MakeZipcode
	Total = 2
	Total = 0

	11
	Z should contain the fields ‘ZIP’, ‘city’, ‘state’ and ‘county’ (1C).
	1
	

	12
	The given arguments are put into the correct fields in Z (1C).
	1
	

	
	readZIP
	Total = 4
	Total = 2

	13
	File2Cell is called on the ZIP code filename to read the zip code data (1S).
	
	1

	14
	The ZIP, city, state and county fields are extracted from each line read (2C, -1 for each mistake).
	2
	

	15
	No trailing spaces in the final city field (1C).
	1
	

	16
	MakeZipcode is called to form a struct from the read fields (1S).
	
	1

	17
	All generated structures are returned correctly in a struct array (1C).
	1
	

	
	findZIP
	Total = 2
	Total = 2

	18
	A while loop is used to correctly find the position of the matching ZIP code in the given structure array (1C, 1S). If a for loop is used that always iterates to the end of the array, award 1C if the correct position is found but deduct the 1S point for inefficiency.
	1
	1

	19
	Comparisons of ZIP strings are correctly handled in one of two ways (1S):
1) str2double is used to convert ZIP strings to doubles and then == or ~= is used.
2) strcmp is used on ZIP strings.
Do not accept direct use of == or ~= on strings.
	
	1

	20
	The structure at the correct position in the array or the empty vector is returned as appropriate (1C).
	1
	

	GENERAL
	
	
	Total=10

	G1
	Script starts with a concise comment describing the program.
Function comment follows function header.
	
	1

	G2
	Code is sufficiently (but not excessively) commented. 
	
	1

	G3
	Line lengths are not excessively long (80 columns).
NOTE: It's ok if a couple lines are a little too long, especially if it’s due to having to print a very long string. 
	
	1

	G4
	No extra output (debugging output) produced
	
	1

	G5
	Proper indentation is always used. 
	
	1

	G6
	Use meaningful variable names. Do not overwrite MATLAB keywords.
	
	1

	G7
	Name important parameters as variables (constants).
	
	1

	G8
	No superfluous code (e.g., an empty if or else branch or a useless loop). Of course some students will have code that is awkward or unclear or inefficient. This point is specifically for not having code that does literally nothing.
	
	1

	G9
	Reasonably efficient code.
	
	1

	G10
	Does NOT put semicolon at wrong places, e.g., at the end of these lines: "if",  "elseif", "else"," for","while", "function".
	
	1

	TOTAL
	
	20
	20



Penalties

	P1
	Student's code does not execute (or student provides a script when a function is required and vice-versa)
	-1 from final score

	P2
	Student's code crashes or does not terminate  (infinite loop) for normal cases.
	-1 from final score

	P3
	All function headers and file names match those specified in the project description exactly. All input and output variables should be of the correct type.
	-1 from final score




Grade Calculation

	Total Possible Correctness Points
	TC = 20

	Total Possible Style Points
	TS = 20

	Student Correctness Points
	C = min( ___ + 1 freebie point, TC)

	Student Style Points
	S = min( ___ + 1 freebie point, TS)



Exceptions: If any file is missing/unacceptable, no freebie points can be applied to that file and subtract 3 style points for each missing/unacceptable file.

	Student’s final score
	([(C/TC)+(S/TS)] X 5) - Penalties

(Out of 10; 1 decimal; no negative score; round to NEAREST)




