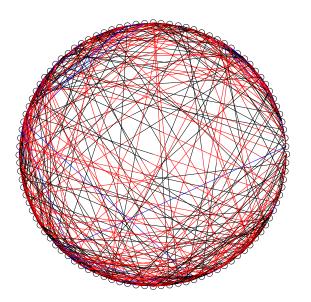
Previous Lecture:

- Discrete vs. continuous; finite vs. infinite
- Linear interpolation
- Vectorized operations

Today's Lecture:

2-d array—matrix

Announcements:


- Discussion this week in the classrooms as listed in the roster
- Prelim I tonight at 7:30pm
 - Last names A-O: Uris Auditorium (room G01)
 - Last names P-Z: Upson Auditorium (room B17)

Storing and using data in tables

A company has 3 factories that make 5 products with these costs:

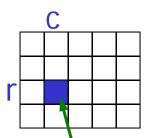
	10	36	22	15	62
С	12	35	20	12	66
	13	37	21	16	59

What is the best way to fill a given purchase order?

Connections between webpages

```
      0
      0
      1
      0
      1
      0
      0

      1
      0
      0
      1
      1
      1
      0

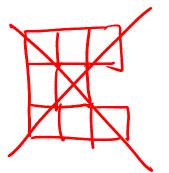

      0
      1
      0
      1
      1
      1
      1
      1

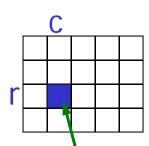
      1
      0
      1
      1
      0
      1
      1
      1

      0
      0
      1
      0
      1
      0
      1
      1
      0

      0
      1
      1
      0
      1
      1
      0
      1
      0
```

2-d array: matrix




- An array is a named collection of like data organized into rows and columns
- A 2-d array is a table, called a matrix
- Two indices identify the position of a value in a matrix, e.g.,

refers to component in row r, column c of matrix mat

- Array index starts at 1
- Rectangular: all rows have the same #of columns

2-d array: matrix

- An array is a named collection of like data organized into rows and columns
- A 2-d array is a table, called a matrix
- Two indices identify the position of a value in a matrix, e.g.,

refers to component in row r, column c of matrix mat

- Array index starts at 1
- Rectangular: all rows have the same #of columns

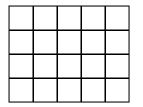
Creating a matrix

- Built-in functions: ones, zeros, rand
 - E.g., zeros(2,3) gives a 2-by-3 matrix of 0s
- "Build" a matrix using square brackets, [], but the dimension must match up:
 - [x y] puts y to the right of x
 - [x; y] puts y below x
 - [4 0 3; 5 | 9] creates the matrix ———
 - [4 0 3; ones(1,3)] gives _______
 - [4 0 3; ones(3,1)] doesn't work

Lecture 13 39

0

Working with a matrix: size and individual components


Given a matrix M

2	-1	.5	0	-3
3	8	6	7	7
5	-3	8.5	9	10
52	81	.5	7	2

Example: minimum value in a matrix

function val = minInMatrix(M)

Example: minimum value in a matrix

function val = minInMatrix(M)

% val is the smallest value in matrix M

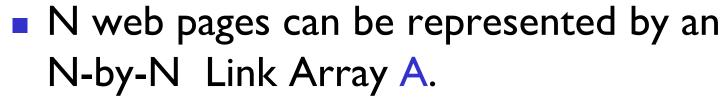
[
$$nr, nc$$
] = $SiZe(M)$;
 $val = M(1,1)$;
for $r = 1:nr$
% At row r
for $c = 1:nc$
% At col c (at row r)
if $M(r, c) < val$
 $val = M(r, c)$;
end
end

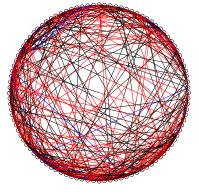
Pattern for traversing a matrix M

```
[nr, nc] = size(M)
for r= 1:nr
    % At row r
    for c= 1:nc
         % At column c (in row r)
         %
         % Do something with M(r,c) ...
    end
end
```

```
% Given an nr-by-nc matrix M.
% What is A?
for r= 1: nr
    for c= 1: nc
         A(c,r) = M(r,c);
    end
end
A A is M with the columns in reverse order
B A is M with the rows in reverse order
```

A is the transpose of M

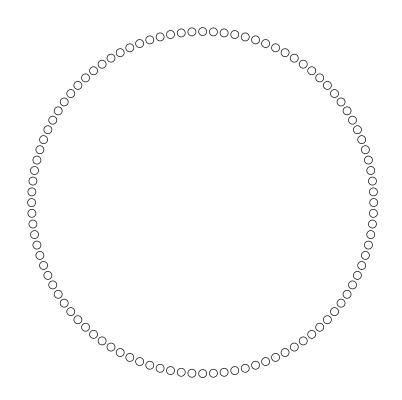

A and M are the same


```
% Given an nr-by-nc matrix M.
% What is A?
for r= 1: nr
   for c= 1: nc
        A(c,r)= M(r,c);
   end
```

end

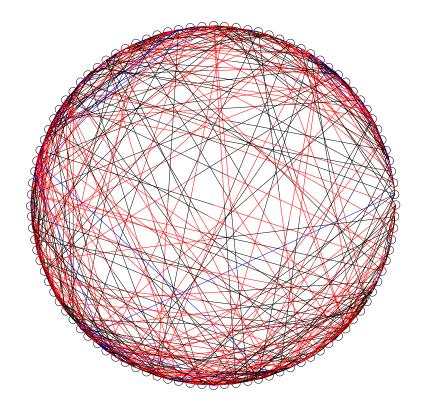
м	0	3	2	5
IM	4	13	20	6
	11	26	9	1

Matrix example: Random Web

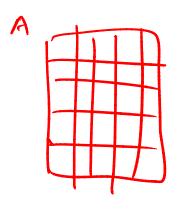

- A(i,j) is I if there is a link on webpage j to webpage i
- Generate a random link array and display the connectivity:
 - There is no link from a page to itself
 - If $i \neq j$ then A(i,j) = 1 with probability $\frac{1}{1+|i-j|}$ There is more likely to be a link if i is close to j

```
function A = RandomLinks(n)
% A is n-by-n matrix of 1s and 0s
% representing n webpages
A = zeros(n,n);
for i=1:n
  for j=1:n
    r = rand(1);
    if i \sim = j && r <= 1/(1 + abs(i - j))
        A(i,j) = 1;
    end
  end
end
```

Random web N = 20


```
01110000010010000000
10001000111000000100
010100000000000000000
001010000000000000000
0001000000110000000
0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,1\,0\,1\,0\,0\,0
01111100010110000000
0000001000010000011
010000001001001000
0000000110100000001
0000001000001100000
00000010010000000001
00010000110101100000
000001000000110000
0000010100001001001
00000010001000001010
01000000100001010110
00000000000000011001
00000010000000000000
00000000000000001010
```

Represent the web pages graphically...


100 Web pages arranged in a circle. Next display the links....

Represent the web pages graphically...

Bidirectional links are blue. Unidirectional link is black as it leaves page j, red when it arrives at page i.

for
$$i = l : n$$

for $j = l : n$

end

Is there another way? See ShowRandomLinks.m

for
$$i = l:n$$

for $j = l:n$
if $A(i,j) = = l$ && $A(j,i) = = l$
 $0 = l$ $0 = l$ $0 = l$

elseif A(i,j) = = 1
% Black-Red
ii>mid mid>i

Somewhat inefficient: each blue line gets drawn twice. See ShowRandomLinks.m

Lecture 13

56

```
% Given an n-by-m matrix A.
% What is this operation?
for g= 1: n
    for h= 1: floor(m/2)
        A(g,h)= A(g, m-h+1);
    end
end
```

- Reflect the right half of A onto the left half
- Reflect the bottom half of A onto the top half

```
% Given an nr-by-nc matrix A.
% What is this operation?
for r= 1: nr
    for c= 1: floor(nc/2)
        A(r,c)= A(r, nc-c+1);
    end
end
```

- Reflect the right half of A
 onto the left half
- Reflect the bottom half of
 A onto the top half