Introduction to Computing
Using Matlab

CS 1112
(CS1142)
Dr. K.-Y. Daisy Fan

http://www.cs.cornell.edu/courses/cs1112/
Today’s lecture

- An illuminating problem
- CS1112 philosophies & syllabus
- What is computer programming?
- Choosing between CS1112 & CS1110
- Course logistics/policies (highlights)
An illuminating problem: computing square roots

- Suppose $A > 0$

- Observation: If A is the area of a square …
 then I can just measure the side length—that is \sqrt{A}

- Solution idea: Make a square with area A

- Real task: Make a sequence of increasingly square rectangles, each with area A
How to make a rectangle “more square”?

- If a square and a rectangle both have area A ...

- Then \sqrt{A} is between the length and width of the rectangle
An improvement strategy

Recipe: \[L_{\text{new}} = \frac{(L + A/L)}{2} \]

Current: \(L \) \hspace{1cm} A/L

Next: \(L_{\text{new}} \) \hspace{1cm} A/L_{\text{new}}

The average of the length and width.
A Matlab program to make “increasingly square” rectangles

% The first rectangle...
L1 = A;
W1 = 1;
% The second rectangle...
L2 = (L1+W1)/2;
W2 = A/L2;
% The third rectangle...
L3 = (L2+W2)/2;
W3 = A/L3;
% and so on...
Some conclusions from square root finding problem

- It paid to have a geometric sense
- A complicated computation was reduced to a sequence of elementary calculations
- A program is like a formula (or sequence of formulas)
Course Goals

- Develop your “computational senses,” senses that you need in computer problem-solving

- Develop a facility with the Matlab programming environment
A sense of geometry
A sense of complexity

What is the best itinerary to visit Boston, Miami, LA, Dallas?

3! = 6 possibilities

Add Seattle, NYC Austin, Denver

7! = 5040

If a computer can process 1 billion itineraries a second, how long does it take to solve a 100-city problem?
A sense of complexity

What is the best itinerary to visit Boston, Miami, LA, Dallas?

3! = 6 possibilities

Add Seattle, NYC, Austin, Denver

7! = 5040

If a computer can process 1 billion itineraries a second, how long does it take to solve a 100-city problem?

About a century…
A sense of approximation & error

\[\frac{1}{3} = \ldots 0.33333 \ldots \]
A sense of randomness and probability

Random walk
Brownian motion in water
Course Goals

- Develop your “computational senses,” senses that you need in computer problem-solving
- Develop a facility with the Matlab programming environment
Computer problem-solving

Key: Algorithmic thinking

Algorithm:
A step-by-step procedure that takes you from a prescribed set of inputs to a prescribed set of outputs

Program:
The algorithm expressed in a specific language, e.g., Matlab
Computer problem-solving — Programming

- Developing instructions for the computer to execute (in order to solve some problem)
- The steps must be logical
- Use a particular language and follow the rules of the language (grammar/syntax)
Example: *Adding songs from the internet to your music library*

- Find a website with MP3 or other audio files
- Register with the music site, if required for music downloading. (Don’t steal music.)
- Click on the music file to download it onto your computer
- Drag the file to your library

Reference: iTunes
Example: *Adding songs from the internet to your music library*

- Drag the file to your library
- Click on a music file to download it onto your computer
- Find a website with MP3 or other audio files
- Register with the music site, if required for music downloading. (Don’t steal music.)

These steps are out of order! Illogical!
Example: *Adding songs from the internet to your music library*

- Find a website with MP3 or other audio files
- Register with the music site, if required for music downloading. (Don’t steal music.)
- Click on the music file to download it onto your computer
- Drag the file to your library

Reference: iTunes
Example: Adding songs from the internet to your music library

- Find a website with MP3 or other audio files
- Register with the music site, if required for music downloading. (Don’t steal music.)
- Click [] to download []
- file Drag your library to

Bad grammar (syntax)!
Computer programming is …

- a tool used by computer scientists, engineers, and other professionals
- not all of computer science

- Think about astronomy: Telescope is a tool used by astronomers; astronomy is not about telescopes…
Matlab is the vehicle we use

With the Matlab environment, you can easily

- Develop programs
- Display results & ideas graphically
- Interact with large data sets (process text, image, and other files)

Matlab has extensive libraries of mathematical, statistical, simulation, and other tools. It is heavily used in engineering & sciences, both in industry and academia.
Engineering students take one of these courses:

- CS1112 – this course, Matlab
- CS1110 – Python

Each course satisfies the Engineering Computing Requirement. In 1112 you will learn procedural programming in depth and be introduced to object-oriented programming.

Each course can serve as the prerequisite for CS/ENGRD 2110 Object-Oriented Programming & Data Structure
CS1112 has a focus on *computational science & engineering*

Approximation, randomness, model building, sensitivity of models

- Lecture examples and homework illustrate above themes
 - Edge detection
 - Ranking web pages
 - Congressional apportionment
Some past programming assignments

- Find the US population center from census data
- Organize protein data using structure arrays
- Mozart’s musical dice game

Root finding tool

Path distance tool (like that in Google Earth)

Draw the random Mondrian

Draw the “Betsy Ross Flag”
CS1110 – Now in Python

- Switched from Java to Python because Python is a friendlier and more modern object-oriented language.
- Python is more relevant to non-computer scientists than Java—numerical libraries are available.

Matlab and Python are just different vehicles we use to travel the “computational landscape.”
→ Different scenery along the way
→ Both vehicles can get you there
CS 1112

- No prior programming experience
- One semester of Calculus
- Focus on computational science & engineering
- Matlab

CS 1110

- No prior programming experience
- No Calculus
- Focus on software development
- Python
CS1112 requirements

- Attend lecture
- Attend discussion—get individual attention/help on weekly exercises!
- Monitor course announcements on website
- Do homework: best 5 of 6 programming projects
- Take 2 prelims and a final exam at their scheduled times
- Answer in-class quizzes (use your clicker)
- Adhere to the Code of Academic Integrity
Grading

- Best five of six projects (25%)
- Discussion exercises (4%)
- In-class quizzes (1%)
- Prelim 1 (20%)
- Prelim 2 (20%)
- Final exam (30%)
Course Materials

- *Insight Through Computing*

 A Matlab introduction to Computational Science and Engineering

- An iClicker clicker

- MATLAB Student Version (2008 or later) optional because you can use it in the public labs
Consulting & Computing

- Consulting in ACCEL Green Room (Engineering Library, Carpenter Hall). Check course website for hours.

- Some public labs that have Matlab:
 - Upson B-7
 - ACCEL
 - (Carpenter Hall, former Engrg Lib)
 - North campus: RPCC
What to do now?

- Pick a course
 Take CS1112 or CS1110
 (add/drop: lecture and discussion and optional AEW)
- Check course website
- Start reading (see listing on course website)
- Attend discussion in the lab (Upson B7) on Tues/Wed
- You must attend the discussion in which you are enrolled!
CS1112 Discussion Sections – start up next week

<table>
<thead>
<tr>
<th>Sec #</th>
<th>Time</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>T 12:20-1:10p</td>
<td>UPS B7 Right & HLS 314</td>
</tr>
<tr>
<td>202</td>
<td>T 1:25-2:15p</td>
<td>UPS B7 Right & HLS 314</td>
</tr>
<tr>
<td>203</td>
<td>T 2:30-3:20p</td>
<td>UPS B7 Right & HLS 401</td>
</tr>
<tr>
<td>204</td>
<td>T 3:35-4:25p</td>
<td>UPS B7 Right & HLS 401</td>
</tr>
<tr>
<td>205</td>
<td>W 10:10-11:00a</td>
<td>UPS B7 Right & HLS 401</td>
</tr>
<tr>
<td>206</td>
<td>W 11:15a-12:05p</td>
<td>UPS B7 Right & HLS 401</td>
</tr>
<tr>
<td>207</td>
<td>W 12:20-1:10p</td>
<td>UPS B7 Right & HLS 401</td>
</tr>
<tr>
<td>208</td>
<td>W 1:25-2:15p</td>
<td>UPS B7 Right & HLS 401</td>
</tr>
<tr>
<td>209</td>
<td>W 2:30-3:20p</td>
<td>UPS B7 Right & HLS 401</td>
</tr>
<tr>
<td>210</td>
<td>W 3:35-4:25p</td>
<td>UPS B7 Right & HLS 401</td>
</tr>
</tbody>
</table>

Discussions are held in UPS B7 the first two weeks