CS1112 Lab Exercise 14

1 Insertion Sort

Download and read function InsertionSort from the Exercises page. Write another function that implements
the insertion algorithm in-place and in-line. Do not count the number of comparisons and swaps.

function x = InsertionSortInplace(x)

% Sort x in ascending order using the insertion sort algorithm.
% Sort in-place, i.e., without creating another vector.

% Perform the insert process in-line, i.e., no subfunction.

% x is a 1-d array of numbers.



2  Writing efficient code

1. Download the script LargestTriangle from the Exercises page. The script (also shown below) is a first
attempt at finding the largest triangle that can be formed from n points on a unit circle. Add code (tic, toc)
to the script to determine how long it takes to find the answer for n = 100, 150, 200. Store the results (time) in
vector t1 such that t1(i) corresponds to n(i), i = 1,2,3.

for n=100:50:200
theta = rand(n,1)*2*pi; 7% Angle of random pts on the unit circle
% Determine how long it takes to compute the largest possible triangle obtained by
% selecting vertices from the points represented by theta

A =0;
for i=1:n
for j=1:n
for k=1:n
% theta --> Cartesian
cl = cos(theta(i)); s1 = sin(theta(i));
c2 = cos(theta(j)); s2 = sin(theta(j));
c3 = cos(theta(k)); s3 = sin(theta(k));
% Area using Heron’s Formula
a = sqrt((cl-c2)"2 + (s1-s2)72);
b = sqrt((c1-c3)"2 + (s1-s3)72);
c = sqrt((c2-c3)"2 + (s2-s3)72);
s = (atb+c)/2; Aijk = sqrt((s-a)*(s-b)*(s-c)*s); A = max(A,Aijk);
end
end
end
end

2. We now start to make the computation more efficient. Append the script rather than modify directly—copy
and paste your code from Part 1 to Part 2 of the script and make the modification in Part 2.

Notice that there are several levels of inefficiency. The area for each different triangle is computed 6 times. Modify
the loop ranges to eliminate this redundancy. Also, there are a lot of redundant sine and cosine evaluations.
Address this issue by moving the c1, s1, c2 and s2 assignments. In Part 2, store the time taken to do the
computation in vector t2 such that t2(i) corresponds to n(i). How much speed-up did you get?

Even with the change in where we compute c1, s1, c2 and s2, we are still doing more sine and cosine evaluations
than necessary—given n values of theta we should only need to make n sine evaluations and n cosine evaluations.
This suggests that we can reduce the time further by precomputing the sine and cosine of theta. We will combine
this insight with another improvement in Part 3 below.

3. There is additional redundancy associated with the side length computations a, b, and c. In Part 3, eliminate
this redundancy by precomputing an n x n array D with the property that D(i,j) is the distance from point
(cos(theta(i)),sin(theta(i))) to point (cos(theta(j)),sin(theta(j))). Note that you only need the “upper half” of D
since D(i,j) = D(j,i). Store the time taken to do the computation in vector t3 such that t3(i) corresponds to

n(1).

4. Draw a plot of the computation time (three graphs of time vs. n). Also show in a table the ratio of t1 to t3
for all n.

5. What is the expected computation time for the three methods for n = 10007

Final note. The speed-up that we get isn’t all “free.” The speed-up that we gain from precomputation has a
cost in computer memory—from version 1 to version 3, the major memory requirement increases from n (length
of theta) to n? (dimension of D). The problem at hand, the language, and the hardware are all considerations
in the trade-off between speed and memory.



