Some old exam questions

1. A Pascal's triangle with levels 0 to 4 is shown below. Level 0 has a single value, and each value on subsequent levels is the sum of the two entries diagonally above in the previous level of the triangle. For example, the value 6 in level 4 is the sum of the values 3 and 3 in level 3 .

1	level 0
11	level 1
121	level 2
1331	level 3
14641	level 4

Complete function pascalVector below to return the row vector corresponding to a specified level of Pascal's triangle. For example, if level lev is 4 , then the returned vector must be $[1,4,6,4,1]$. Assume that lev is a non-negative integer. The only Matlab built-in functions allowed are zeros, ones, and length. Do not use the formula for binomial coefficients to solve this problem. Use a loop (or loops): the vector for each level is based on the vector from the previous level.

```
function p = pascalVector(lev)
% p is the vector corresponding to level lev of Pascals triangle
```

2. Complete the following function.
```
function MyHistogram(v)
% Draw a histogram for the data in v using asterisks in the COMMAND WINDOW (not figure window).
% v is a vector of non-negative values.
% The histogram is scaled so that the largest data value is represented by
% ten asterisks. Round as necessary in order to draw whole asterisks.
% Example: v = [12 4.1 0.5 9.2 20]
% Output in Command Window:
% ******
% **
%
% *****
% ***********
```

3. (a) Implement function isIn as specified. The only built-in function that you may use is length.
```
function alfa = isIn(x, v)
% alfa is 1 if value x is in vector v. Otherwise alfa is 0.
% x is an integer. v is a vector of integers, possibly of length 0.
% If v has length 0 (v is the empty vector), then alfa is 0.
```

(b) Let a and b be non-empty vectors of integers. We define the intersection set of a and b to be the distinct values that appear in both vectors a and b. For example, if

```
a = [4 [4 2 2 5 5 3 8 6]
b}=[\begin{array}{llllllllll}{3}&{5}&{1}&{6}&{4}&{5}&{5}&{0}&{7}\end{array}
```

then the intersection set of a and b is the vector $\left[\begin{array}{llll}4 & 5 & 3 & 6\end{array}\right]$ (the order of the values in the vector does not matter). Implement function intersectionSet as specified, making effective use of function isIn. The only built-in function that you may use is length.

```
function s = intersectionSet(a,b)
% a and b are vectors of integers. a and b are not empty.
% Vector s contains only the values that are in both vectors a and b.
% Vector s contains distinct values. s may be empty.
```

4. Implement function partialStrings as specified. Do not use vectorized code.
```
function M = partialStrings(CA, t)
% CA is a length n cell array of strings.
% t is a positive integer.
% M is an n-by-t matrix of characters:
% Row r of M contains the first t characters of the rth string in CA.
% If the rth string in CA is shorter than t, pad the string with '!'.
% NO VECTORIZED CODE
```

For example, let cell array CA hold these five strings:

```
'd' 'a2c' '# _!.a' ', 'ap'
```

Then the function call $M=$ partialStrings $(C A, 3)$ should return a matrix M like this:

```
['d!!' ; ...
    'a2c' ; ...
    '# _' ; ...
    '!!!' ; ...
    'ap!']
```

5. (a) Implement this function:
```
function z = overlap(diskA, diskB)
% z is 1 (true) if diskA and diskB overlap; otherwise z is O (false).
% diskA and diskB are each a disk structure with the following fields:
% x: x-coordinate of center of disk
% y: y-coordinate of center of disk
% radius: radius of disk
```

(b) Implement the following function to return the indices of disk triplets that overlap. Three disks form a triplet if every disk overlaps with each of the other two. Make effective use of function overlap from part (a). Your code should be efficient-avoid unnecessary iterations.

```
function idx = diskTriplets(D)
% D is a 1-d array of disk structures; each structure has fields as defined in
% part (a). Assume D has a length greater than 3.
% idx is a vector of indices indicating all triplet overlap combinations. For example,
% if disks 2, 4, and 5 form a triplet and disks 3, 4, and 6 form a triplet, idx
% should be the vector [2 4 5 5 3 4 6]. Other orderings of triplets are acceptable,
% however each triplet should only appear once.
```


A triplet

Not a triplet

