[bookmark: _GoBack]Project 1 Grading Guide

	Item no.
	Description
	Correctness
	Style

	PROBLEM 1
	kepModel.m
	Total = 9
	Total = 4

	1
	Platonic solids are nested in the correct order: cube, tetrahedron, dodecahedron, icosahedron, octahedron. If one is missing, but the order is otherwise correct, then they still get the point.
	
	1

	2
	Compute/initialize the radius of the outer sphere to 1.
	1
	

	3
	Compute the edge length E of each platonic solid via: E=R/F_R, where R is the radius of the enclosing sphere (previously computed) and F_R is the proportionality constant relating edge length to outer-­radius. It is OK if this calculation appears implicitly in the calculation of the inner radius.
	1
	

	4
	Compute the inner radius r of each platonic solid via: r=E * F_r, where E is the edge length of the platonic solid (previously
computed) and F_r is the proportionality constant relating edge length and inner ­radius. It is ok if E is computed inline.
	1
	

	5
	Proportionality constants F_R and F_r are computed correctly for each of the platonic solids. Subtract 1 point for each mistake, up to 3.
	3
	

	6
	If the student doesn’t store the various proportionality constants F_R and F_r in
variables, remember to take off the general style point for assigning constants to variables (Item 33).
	
	

	7
	Compute the circumference of each sphere.
	1
	

	8
	Values are computed for exactly six spheres.
	1
	

	9
	Display both the radius and circumference of each sphere (1c). For this point, any display method is acceptable. Each value is displayed with 15 decimal places of precision (1s).
	1
	1

	10
	Values are displayed in a table, with one row per sphere and values lined up along the decimal point (1s). The table either has a table header (identifying the radius and circumference), or each value is labeled directly (1s).
	
	2

	
	
	
	

	PROBLEM 2
	almostSqr.m
	Total = 14
	Total = 8

	11
	Point 1 is set using user-clicked point (ginput).
	1
	

	12
	Both variables x and y are set to a random number in the interval (1,9).
Uses built-in function rand() twice, once for each x and y. (1c)
Scales the result of rand() by 8. (1c)
Shifts the result of rand() by 1. (1c)
	3
	

	13
	The code that solicits and plots Point 3 has been removed.
	
	1

	14
	Points 1 and 2 are treated as the original opposing corners of a rectangle.
	1
	

	15
	Correctly computes and assigns side lengths of the rectangle.
	1
	

	16
	Determines which side length is long (L) or short (S) using max()/min() or an if statement.
	1
	

	17
	Correctly uses if statements to check for each condition (L/S < 1.2; L/S is in the range of 1.2 to 2; L/S > 2). -1 for first mistake, -2 for more than one mistake.
	2
	

	18
	Conditions in the if statement are simplified using an if-elseif-else construct.
	
	1

	19
	In cases 2 & 3: Display the original ratio L/S (1s) and the average value between the height and width of the rectangle (1s) in the title area.
	
	2

	20
	In cases 2 & 3: The new rectangle is centered at (5,5).
	1
	

	21
	Draw 4 lines to form a rectangle (e.g. using plot or rectangle).
	
	1

	22
	The figure window passes the “Sanity Check”: “The final figure window should show a rectangle, two markers that may or may not be the opposing vertices of the plotted rectangle, and a message in the title area.”
	
	1

	
	Handle all three conditions as follows:
	
	

	
	Case 1: L/S is less than 1.2
	
	

	23
	L/S is displayed to two
decimal places (1S) in the title area of the plot e.g. using title() and sprintf() (1C)
(Note: don’t take off for other conditions if display is not to two decimal places)
	1
	1

	
	Case 2: L/S is in the range of 1.2 to 2
	
	

	24
	Correctly performs one averaging step.
	1
	

	
	Case 3: L/S is greater than 2
	
	

	25
	Correctly performs two averaging steps. -1 point for each error, max. -2.
	2
	

	26
	Does not edit provided code/comments in sections where comments denote that the code should not be modified.
	
	1

	GENERAL
	
	
	Total=10

	27
	Script starts with a concise comment describing the program.
Function comment follows function header.
	
	1

	28
	Code is sufficiently (but not excessively) commented.
	
	1

	29
	Line lengths are not excessively long (80 columns).
NOTE: It's ok if a couple lines are a little too long, especially if they are print statements
	
	1

	30
	No extra output (debugging output) produced
	
	1

	31
	Proper indentation is always used.
	
	1

	32
	Use meaningful variable names. Do not overwrite MATLAB keywords.
	
	1

	33
	Name important parameters as variables (constants).
	
	1

	34
	No superfluous code (e.g., an empty if or else branch or a useless loop). Of course some students will have code that is awkward or unclear or inefficient. This point is specifically for not having code that does literally nothing.
	
	1

	35
	Reasonably efficient code.
	
	1

	36
	Does NOT put semicolon at wrong places, e.g., at the end of these lines: "if", "elseif", "else"," for","while", "function".
	
	1

	TOTAL
	
	23
	22

Penalties

	P1
	Student's code does not execute (or student provides a script when a function is required and vice-versa)
	-1 from final score

	P2
	Student's code crashes or does not terminate (infinite loop) for normal cases.
	-1 from final score

	P3
	All function headers and file names match those specified in the project description exactly. All input and output variables should be of the correct type.
	-1 from final score

Grade Calculation

	Total Possible Correctness Points
	TC = 23

	Total Possible Style Points
	TS = 22

	Student Correctness Points
	C = min(___ + 1 freebie point, TC)

	Student Style Points
	S = min(___ + 1 freebie point, TS)

Exceptions: If any file is missing/unacceptable, no freebie points can be applied to that file and subtract 3 style points for each missing/unacceptable file.

	Student’s final score
	([(C/(TC))+(S/TS)] X 5) - Penalties

(Out of 10; 1 decimal; no negative score; round to NEAREST)

