Consider the quadratic function \(q(x) = x^2 + bx + c \) on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L) \) or \(q(R) \)?
- What is the minimum value of \(q(x) \) in \([L, R]\)?

The value of a boolean expression is either true or false.

\((\text{L} \leq x \leq \text{c}) \land \land (x < \text{c} \leq \text{R})\)

This (compound) boolean expression is made up of two (simple) boolean expressions. Each has a value that is either true or false.

Connect boolean expressions by boolean operators:

- and
- or
- not

\(\land \lor \sim \)

Logical operators

- \&\& logical and: Are both conditions true?
 - E.g., we ask “is \(L \leq x \leq \text{c} \) and \(x < \text{c} \leq R \)?”
 - In our code: \(\text{L} \leq x \leq \text{c} \land \land (x < \text{c} \leq \text{R}) \)

- \| logical or: Is at least one condition true?
 - E.g., we can ask if \(x \leq \text{c} \) is outside \([L, R]\), i.e., “is \(x < L \) or \(R < x \)?”
 - In code: \(x < \text{L} \lor \lor R < x \)

- \~ logical not: Negation
 - E.g., we can ask if \(x \leq \text{c} \) is not outside \([L, R]\).
 - In code: \(\sim (x < \text{L} \lor \lor R < x) \)

Logical operators “short-circuit”

- \&\& condition short-circuits to false if the left operand evaluates to false.
 - A \&\& condition short-circuits to false if the left operand evaluates to false.

- A \| condition short-circuits to false if the first part is false.

```
\begin{tabular}{|c|c|c|c|c|}
\hline
X & Y & X \&\& Y & X \| Y & \sim Y \\
\hline
F & F & F & F & T \\
F & T & F & T & F \\
T & F & F & F & T \\
T & T & T & T & T \\
\hline
\end{tabular}
```
Always use logical operators to connect simple boolean expressions

Why is it wrong to use the expression \(L <= xc <= R \) for checking if \(xc \) is in \([L,R]\)?

Example: Suppose \(L \) is 5, \(R \) is 8, and \(xc \) is 10. We know that 10 is not in \([5,8]\), but the expression \(L <= xc <= R \) gives...

Variables \(a, b, \) and \(c \) have whole number values. True or false: This fragment prints “Yes” if there is a right triangle with side lengths \(a, b, \) and \(c \) and prints “No” otherwise.

\[
\begin{align*}
\text{if } a^2 + b^2 &= c^2 \\
& \text{disp('Yes')} \\
\text{else} \\
& \text{disp('No')} \\
\text{end}
\end{align*}
\]

A: true
B: false

Conclusion

If \(xc \) is between \(L \) and \(R \)

Then min is at \(xc \)

Otherwise

Min value is at one of the endpoints

Start with pseudocode

If \(xc \) is between \(L \) and \(R \)

Min is at \(xc \)

Otherwise

Min is at one of the endpoints

We have decomposed the problem into three pieces! Can choose to work with any piece next: the if-else construct/condition, min at \(xc \), or min at an endpoint

Set up structure first: if-else, condition

\[
\begin{align*}
\text{if } L <= xc \text{ & } xc <= R \\
& \text{Then min is at } xc \\
\text{else} \\
& \text{Min is at one of the endpoints} \\
\text{end}
\end{align*}
\]

Now refine our solution-in-progress. I’ll choose to work on the if-branch next
Refinement: filled in detail for task “min at xc”

if \(L \leq xc \leq R \)
\[
\begin{array}{l}
\text{\% min is at } xc \\
qMin = xc^2 + b*xc + c;
\end{array}
\]
else
\[
\begin{array}{l}
\text{Min is at one of the endpoints}
\end{array}
\]
end

Continue with refining the solution… else-branch next

Refinement: detail for task “min at an endpoint”

if \(L \leq xc \leq R \)
\[
\begin{array}{l}
\text{\% min is at } xc \\
qMin = xc^2 + b*xc + c;
\end{array}
\]
else
\[
\begin{array}{l}
\text{\% min is at one of the endpoints} \\
\text{if } \% \text{ xc left of bracket} \\
\text{\% min is at } L \\
\text{elseif } \% \text{ xc right of bracket} \\
\text{\% min is at } R \\
\text{end}
\end{array}
\]
end

Continue with the refinement, i.e., replace comments with code

Final solution (given \(b,c,L,R,xc \))

if \(L \leq xc \leq R \)
\[
\begin{array}{l}
\text{\% min is at } xc \\
qMin = xc^2 + b*xc + c;
\end{array}
\]
else
\[
\begin{array}{l}
\text{\% min is at one of the endpoints} \\
\text{if } \% \text{ xc L} \\
\text{\% qMin is } L^2 + b*L + c; \\
\text{elseif } \% \text{ xc R} \\
\text{\% qMin is } R^2 + b*R + c;
\end{array}
\]
end

An if-statement can appear within a branch—just like any other kind of statement!

Notice that there are 3 alternatives \(\rightarrow \) can use elseif!

if \(L \leq xc \leq R \)
\[
\begin{array}{l}
\text{\% min is at } xc \\
qMin = xc^2 + b*xc + c;
\end{array}
\]
else
\[
\begin{array}{l}
\text{\% min at one endpt} \\
\text{if } xc < L \\
\text{\% qMin is } L^2 + b*L + c; \\
\text{elseif } xc < R \\
\text{\% qMin is } R^2 + b*R + c;
\end{array}
\]
end

Top-Down Design

State problem
\[\downarrow\]
Define inputs & outputs
\[\downarrow\]
Design algorithm
\[\downarrow\]
Convert algorithm to program
\[\downarrow\]
Decomposition
Stepwise refinement
An algorithm is an idea. To use an algorithm you must choose a programming language and implement the algorithm.