Previous Lecture (and Discussion):
 - Branching (*if, elseif, else, end*)
 - Relational operators (<, >=, ==, ~=, …, etc.)
 - Logical operators (&&, ||, ~)

Today’s Lecture:
 - Logical operators and “short-circuiting”
 - More branching—*nesting*
 - Top-down design

Announcements:
 - **Project 1** (P1) due tonight at 11pm
 - Submit real .m files (plain text, not from a word processing software such as Microsoft Word)
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L)\) or \(q(R)\)?
- What is the minimum value of \(q(x)\) in \([L, R]\)?
The value of a boolean expression is either true or false.

\[(L \leq xc) \land (xc \leq R)\]

This (compound) boolean expression is made up of two (simple) boolean expressions. Each has a value that is either true or false.

Connect boolean expressions by boolean operators:

and \[\land\] or \[\lor\] not \[\lnot\]
Logical operators

&& logical and: Are both conditions true?

E.g., we ask “is $L \leq x_c$ and $x_c \leq R$?”

In our code: $L \leq x_c$ && $x_c \leq R$
Logical operators

&& logical and: Are both conditions true?
E.g., we ask “is $L \leq x_c$ and $x_c \leq R$?”
In our code: $L \leq xc$ && $xc \leq R$

|| logical or: Is at least one condition true?
E.g., we can ask if x_c is outside of $[L,R]$, i.e., “is $x_c < L$ or $R < x_c$?”
In code: $xc < L$ || $R < xc$
Logical operators

&& logical **and**: Are both conditions true?
E.g., we ask “is $L \leq x_c$ and $x_c \leq R$?”
In our code: $L \leq x_c$ && $x_c \leq R$

|| logical **or**: Is at least one condition true?
E.g., we can ask if x_c is outside of $[L,R]$, i.e., “is $x_c < L$ or $R < x_c$?”
In code: $x_c < L$ || $R < x_c$

~ logical **not**: Negation
E.g., we can ask if x_c is not outside $[L,R]$.
In code: ~(xc < L || R < xc)
The logical AND operator: `&&`

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
The logical AND operator: &&

<table>
<thead>
<tr>
<th>F</th>
<th>F</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
The logical OR operator:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
The logical OR operator: $||$

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
The logical NOT operator: ~

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

~
The logical NOT operator: \sim
“Truth table”

X, Y represent boolean expressions.
E.g., \(d > 3.14 \)

| X | Y | X && Y | X || Y | ~y |
|---|---|--------|--------|----|
| F | F | F | F | T |
| F | T | F | T | F |
| T | F | F | T | T |
| T | T | T | T | F |
“Truth table”

Matlab uses 0 to represent false, 1 to represent true.

| X | Y | X && Y | X || Y | ~Y |
|---|---|--------|--------|-----|
| 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 |
Logical operators “short-circuit”

\[a > b \quad \&\& \quad c > d \]

- **true**: Go on
- **false**: Stop

Entire expression is false since the first part is false

A && condition short-circuits to false if the left operand evaluates to \textit{false}.

A || condition short-circuits to _________________ \text{if}

__
Logical operators “short-circuit”

A `&&` condition short-circuits to false if the left operand evaluates to `false`.

A `||` condition short-circuits to true if the left operand evaluates to `true`.

Entire expression is false since the first part is false.
Always use logical operators to connect simple boolean expressions

Why is it wrong to use the expression

\[
L \leq x_c \leq R
\]

for checking if \(x_c \) is in \([L,R]\)?

Example: Suppose \(L \) is 5, \(R \) is 8, and \(x_c \) is 10. We know that 10 is not in \([5,8]\), but the expression \(L \leq x_c \leq R \) gives…
Variables a, b, and c have whole number values. **True** or **false**: This fragment prints “Yes” if there is a *right triangle* with side lengths a, b, and c and prints “No” otherwise.

```matlab
if a^2 + b^2 == c^2
    disp('Yes')
else
    disp('No')
end
```

A: true

B: false
```matlab
a = 5;
b = 3;
c = 4;
if (a^2+b^2==c^2)
    disp('Yes')
else
    disp('No')
end
```

This fragment prints "No" even though we have a right triangle!
a = 5;
b = 3;
c = 4;
if ((a^2+b^2==c^2) || (a^2+c^2==b^2) || (b^2+c^2==a^2))
 disp('Yes')
else
 disp('No')
end
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L)\) or \(q(R)\)?
- What is the minimum value of \(q(x)\) in \([L, R]\)?
\[q(x) = x^2 + bx + c \]

\[x_c = -\frac{b}{2} \]

\[\text{min at } R \]
Conclusion

If x_c is between L and R

Then min is at x_c

Otherwise

Min value is at one of the endpoints
Start with pseudocode

If xc is between L and R

Min is at xc

Otherwise

Min is at one of the endpoints

We have decomposed the problem into three pieces! Can choose to work with any piece next: the if-else construct/condition, min at xc, or min at an endpoint
Set up structure first: if-else, condition

if \(L \leq xc \) && \(xc \leq R \)

Then min is at \(xc \)

else

Min is at one of the endpoints

end

Now refine our solution-in-progress. I’ll choose to work on the if-branch next
Refinement: filled in detail for task “min at xc”

if \(L \leq \text{xc} \) && \(\text{xc} \leq R \)
 \% min is at xc
 qMin = \text{xc}^2 + b*\text{xc} + c;

else
 Min is at one of the endpoints
end

Continue with refining the solution... else-branch next
Refinement: detail for task “min at an endpoint”

if \(L \leq xc \leq R \)
 % min is at xc
 qMin= xc^2 + b*xc + c;
else
 % min is at one of the endpoints
 if % xc left of bracket
 % min is at L
 else % xc right of bracket
 % min is at R
 end
end

Continue with the refinement, i.e., replace comments with code
Refinement: detail for task “min at an endpoint”

```matlab
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
else
    % min is at one of the endpoints
    if xc < L
        qMin= L^2 + b*L + c;
    else
        qMin= R^2 + b*R + c;
    end
end
```
Final solution (given b, c, L, R, xc)

```matlab
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
else
    % min is at one of the endpoints
    if xc < L
        qMin= L^2 + b*L + c;
    else
        qMin= R^2 + b*R + c;
    end
end
```

An if-statement can appear within a branch—just like any other kind of statement!
quadMin.m
quadMinGraph.m
Notice that there are 3 alternatives \(\rightarrow \) can use elseif!

\[
\text{if } L \leq xc \land xc \leq R \\
\quad \text{\% min is at xc} \\
\quad qMin = xc^2 + b*xc + c; \\
\text{else} \\
\quad \text{\% min at one endpoint} \\
\quad \text{if } xc < L \\
\quad \quad qMin = L^2 + b*L + c; \\
\quad \text{else} \\
\quad \quad qMin = R^2 + b*R + c; \\
\quad \text{end} \\
\text{end}
\]
Top-Down Design

An algorithm is an idea. To use an algorithm you must choose a programming language and implement the algorithm.
An algorithm is an idea. To use an algorithm you must choose a programming language and implement the algorithm.
If \(x_c \) is between \(L \) and \(R \)
 Then min value is at \(x_c \)

Otherwise
 Min value is at one of the endpoints
if \ L \leq xc \land xc \leq R
 \% \text{ min is at } xc

else
 \% \text{ min is at one of the endpoints}

end
if \ L<=xc \&\& \ xc<=R
\% min is at xc

else
\% min is at one of the endpoints

end
if \ L<=xc \&\& \ xc<=R \\
% min is at \ xc \\
qMin= xc^2 + b*xc + c; \\
else \\
% min is at one of the endpoints \\
end
if \(L \leq xc \leq R \)
 % min is at xc
 \(q_{\text{Min}} = xc^2 + b*xc + c; \)
else
 % min is at one of the endpoints
end
if \(L \leq xc \) && \(xc \leq R \)
% min is at \(xc \)
\[qMin = xc^2 + b*xc + c; \]
else
% min is at one of the endpoints
if \(xc < L \)

else

end
end
if \(L \leq xc \) && \(xc \leq R \)
% min is at \(xc \)
\[qMin = xc^2 + b*xc + c; \]
else
% min is at one of the endpoints
if \(xc < L \)
\[qMin = L^2 + b*L + c; \]
else
\[qMin = R^2 + b*R + c; \]
end
end