Previous Lecture:
- Examples on cell arrays, file I/O, sort

Today's Lecture:
- Structures
- Structure array (i.e., an array of structures)
- A structure with array fields

Announcements:
- Project 5 Part A posted, due Thurs 4/11
- Prelim 2 on Tues 4/16 at 7:30pm

Data are often related
- A point in the plane has an x coordinate and a y coordinate.
- If a program manipulates lots of points, there will be lots of x's and y's.
- Anticipate clutter. Is there a way to "package" the two coordinate values?

Packaging affects thinking

Our Reasoning Level:
P and Q are points. Compute the midpoint M of the connecting line segment.

Behind the scenes we do this:
\[M_x = \frac{P_x + Q_x}{2} \]
\[M_y = \frac{P_y + Q_y}{2} \]

We've seen this before: functions are used to "package" calculations.
This packaging (a type of abstraction) elevates the level of our reasoning and is critical for problem solving.

Example: a Point structure

\% p1 is a Point
p1.x = 3;
p1.y = 4;

\% p2 is another Point
p2.x = -1;
p2.y = 7;

A Point has two properties—fields—x and y

Working with Point structures

\% Create a struct by assigning field values
p1.x = 3;
p1.y = 4;

\% Create a struct with built-in function
p2 = struct('x','-1', 'y',7);

Note that p1.x, p1.y, p2.x, p2.y participate in the calculation as variables—because they are.

Different ways to create a structure

\% Create a struct by assigning field values
p1.x = 3;
p1.y = 4;

\% Create a struct with built-in function
p2 = struct('x','-1', 'y','7');

p2 is a structure.
The structure has two fields.
Their names are x and y.
They are assigned the values -1 and 7.
A structure can have fields of different types

\[A = \text{struct}('\text{name}', '\text{New York}', \ldots, '\text{capital}', '\text{Albany}', \ldots, '\text{Pop}', 15.5) \]

- Can have combinations of string fields and numeric fields
- Arguments are given in pairs: a field name, followed by the value

Legal/Illegal maneuvers

\[Q = \text{struct}('x',5,'y',6) \]
\[R = Q \]
% Legal. R is a copy of Q
\[S = (Q+R)/2 \]
% Illegal. Must access the fields to do calculations
\[P = \text{struct}('x',3,'y') \]
% Illegal. Args must be in pairs (field name followed by field value)
\[P = \text{struct}('x',3,'y',[]) \]
% Legal. Use [] as place holder

Structures in functions

```
function d = dist(P,Q)
    % P and Q are points (structure).
    % d is the distance between them.
    d = sqrt((P.x-Q.x)^2 + ...)
        (P.y-Q.y)^2);
```

Example “Make” Function

```
function P = MakePoint(x,y)
    % P is a point with P.x and P.y
    % assigned the values x and y.
    P = struct('x',x,'y',y);
```

```
a = 10; b = rand;
P = MakePoint(a,b); % create a point struct
```

Then in a script or some other function...

```
a = 10; b = rand;
P = MakePoint(a,b); % create a point struct
```

% according to definition
% in MakePoint function

Another function that has structure parameters

```
function DrawLine(P,Q,c)
    % P and Q are points (structure).
    % Draws a line segment connecting P and Q. Color is specified by c.
    plot([P.x Q.x],[P.y Q.y],c)
```

Pick Up Sticks

```
s = 'rgbmcy';
for k=1:100
    P = MakePoint(randn,randn);
    Q = MakePoint(randn,randn);
    c = s(ceil(6*rand));
    DrawLine(P,Q,c)
end
```

Generates two random points and connect them using one of six colors chosen randomly.
Structure Arrays

- An array whose components are structures
- All the structures must be the same (have the same fields) in the array
- Example: an array of points (point structures)

\[
\begin{array}{cccc}
\text{P(1)} & \text{P(2)} & \text{P(3)} & \text{P(4)} \\
.5 & .86 & 1.5 & .91 & .4 & .28 & 2.5 & 1.8 \\
\end{array}
\]

An Array of Points

- Example: an array of points (point structures)

\[
P(1) = \text{MakePoint}(0.50, 0.86)
\]

An Array of Points

- Function returning an array of points (point structures)

\[
\text{function } P = \text{CirclePoints}(n) \\
\text{P is array of } n \text{ point structs; the points are evenly spaced on unit circle}
\[
\theta = \frac{2\pi}{n}; \\
\text{for } k = 1:n \\
c = \cos(\theta \cdot k); \\
s = \sin(\theta \cdot k); \\
P(k) = \text{MakePoint}(c, s); \\
\text{end}
\]

Example: all possible triangles

- Place \(n \) points uniformly around the unit circle.
- Draw all possible unique triangles obtained by connecting these points 3-at-a-time.

\[
\text{function } \text{DrawTriangle}(U, V, W, c) \\
\text{% Draw } c\text{-colored triangle;} \\
\text{% triangle vertices are points } U, \\
\text{% V, and W.} \\
\text{fill([U.x V.x W.x], …} \\
[U.y V.y W.y], c)
\]
The following triangles are the same: (1,3,6), (1,6,3), (3,1,6), (3,6,1), (6,1,3), (6,3,1)

% Given P, an array of point structures
for i=1:n
 for j=1:n
 for k=1:n
 DrawTriangle(P(i),P(j),P(k),'m')
 pause
 DrawTriangle(P(i),P(j),P(k),'k')
 end
 end
end

Bad! i, j, and k should be different, and there should be no duplicates.

All possible (i,j,k) combinations but avoid duplicates. Loop index values have this relationship i < j < k

% Drawing on a black background
for i=1:n-2
 for j=i+1:n-1
 for k=j+1:n
 DrawTriangle(P(i),P(j),P(k),'m')
 DrawPoints(P)
 pause
 DrawTriangle(P(i),P(j),P(k),'k')
 end
 end
end

Still get the same result if all three loop indices end with n?

A: Yes
B: No

All possible triangles

% Drawing on a black background
for i=1:n-2
 for j=i+1:n-1
 for k=j+1:n
 DrawTriangle(P(i),P(j),P(k),'m')
 DrawPoints(P)
 pause
 DrawTriangle(P(i),P(j),P(k),'k')
 end
 end
end
Structures with array fields

Let’s develop a structure that can be used to represent a colored disk. It has four fields:

- \(xc \): x-coordinate of center
- \(yc \): y-coordinate of center
- \(r \): radius
- \(c \): rgb color vector

Examples:

\[
D1 = \text{struct}('xc',1,'yc',2,'r',3, ... 'c',[1 0 1]);
D2 = \text{struct}('xc',4,'yc',0,'r',1, ... 'c',[.2 .5 .3]);
\]

Example: compute “average” of two disks

% \(D1 \) and \(D2 \) are disk structures.
% Average is:
\[
\begin{align*}
 r &= (D1.r + D2.r) / 2; \\
 xc &= (D1.xc + D2.xc)/2; \\
 yc &= (D1.yc + D2.yc)/2; \\
 c &= (D1.c + D2.c) /2;
\end{align*}
\]
% The average is also a disk
\[
D = \text{struct}('xc',xc,'yc',yc,'r',r,'c',c)
\]

How do you assign to \(g \) the green-color component of disk \(D \)?

\[
D = \text{struct}('xc',3.5, 'yc',2, ... 'r',1.0, 'c',[.4 .1 .5])
\]

A: \(g = D.g \);
B: \(g = D.c.g \);
C: \(g = D.c.2 \);
D: \(g = D.c(2) \);
E: other

A structure’s field can hold a structure

A = MakePoint(2,3)
B = MakePoint(4,5)
L = struct('P',A,'Q',B)
- This could be used to represent a line segment with endpoints \(P \) and \(Q \), for instance
- Given the MakePoint function to create a point structure, what is \(x \) below?

\[
x = L.P.y;
\]
A: 2 B: 3 C: 4 D: 5 E: error