Previous Lecture (and lab):
- Variables & assignment
- Built-in functions
- Input & output
- Good programming style (meaningful variable names; use comments)

Today’s Lecture:
- Branching (conditional statements)
Announcements:

- Project 1 (P1) due Thurs, 9/12, at 11pm
- Pay attention to Academic Integrity
- You can see any TA for help, not just your discussion TA
- Consulting
 - Matlab consultants at ACCEL Green Rm (Carpenter Hall 2nd fl. computing facility)
 - 5-10pm Sunday to Thursday
- Just added CS1112? Tell your discussion TA to add you in CS1112 CMS (and tell CS1110 to drop your from their CMS)
- Piazza – “Q & A system” for all students in CS1112. Use it for clarification only—do not ask (answer) homework questions and do not give hints on homework. Will be monitored by TAs. Available tomorrow.
Quick review

- **Variable**
 - A named memory space to store a value

- **Assignment operator:** $=\$
 - Let x be a variable that has a value. To give variable y the same value as x, which statement below should you write?
 $$x = y \quad \text{or} \quad y = x$$

- **Script (program)**
 - A sequence of statements saved in an m-file

- **; (semi-colon)**
 - Suppresses printing of the result of assignment statement
So far, all the statements in our scripts are executed in order.

We do not have a way to specify that some statements should be executed only under some condition.

We need a new language construct…
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L)\) or \(q(R)\)?
- What is the minimum value of \(q(x)\) in \([L, R]\)?
What are the critical points?
What are the critical points?

- End points: \(x = L, x = R \)
- \(\{ x \mid q'(x) = 0 \} \)
What are the critical points?

- End points: \(x = L , x = R \)
- \(\{ x \mid q'(x) = 0 \} \)

\[
q(x) = x^2 + bx + c \\
q'(x) = 2x + b \\
q'(x_c) = 0 \Rightarrow x_c = -\frac{b}{2}
\]
Write a code fragment that prints “yes” if $q(x)$ increases across the interval and “no” if it does not.
Quadratic \(q(x) = x^2 + bx + c \)

\[
b = \text{input}('\text{Enter } b: '); \\
c = \text{input}('\text{Enter } c: '); \\
L = \text{input}('\text{Enter } L: '); \\
R = \text{input}('\text{Enter } R: '); \\
\]

Determines whether \(q \) increases across \([L, R]\)

\[
xc = -b/2; \\
\]
The Situation

\[q(x) = x^2 + bx + c \]

\[x_c = -\frac{b}{2} \]
Does $q(x)$ increase across $[L,R]$?

$q(x) = x^2 + bx + c$

$x_c = -b / 2$

No!
So what is the requirement?

% Determine whether q increases
% across [L,R]
xc = -b/2;

if ________________
 fprintf('Yes\n')
else
 fprintf('No\n')
end
So what is the requirement?

% Determine whether q increases
% across [L,R]
xc = -b/2;

if xc <= L
 fprintf('Yes\n')
else
 fprintf('No\n')
end

Relational Operators
< Less than
> Greater than
\leq Less than or equal to
\geq Greater than or equal to
== Equal to
\neq Not equal to
So what is the requirement?

% Determine whether q increases across [L,R]
xc = -b/2;

if _______
 fprintf('Yes\n')
else
 disp('No')
end
Problem 2

Write a code fragment that prints
“qleft is smaller”
if q(L) is smaller than q(R).
If q(R) is smaller print
“qright is smaller.”
Algorithm v0

Calculate $q(L)$
Calculate $q(R)$

If $q(L) < q(R)$
 print “qleft is smaller”

Otherwise
 print “qright is smaller”
Algorithm v0.1

Calculate x_c

If distance x_cL is smaller than distance x_cR

print “qleft is smaller”

Otherwise

print “qright is smaller”
Do these two fragments do the same thing?

% given x, y
if x>y
 disp('alpha')
else
 disp('beta')
end

% given x, y
if y>x
 disp('beta')
else
 disp('alpha')
end

A: yes
B: no
Algorithm v1

Calculate \(x_c \)

If distance \(x_cL \) is smaller than distance \(x_cR \)
 print “\(q\text{left} \) is smaller”
Otherwise
 print “\(q\text{right} \) is smaller or equals \(q\text{left} \)”
Algorithm v2

Calculate \(x_c \)

If distance \(x_c L \) is same as distance \(x_c R \)
 print “qleft and qright are equal”
Otherwise, if \(x_c L \) is shorter than \(x_c R \)
 print “qleft is smaller”
Otherwise
 print “qright is smaller”
% Which is smaller, q(L) or q(R)?

xc = -b/2; % x at center
if (abs(xc-L) == abs(xc-R))
 disp('qleft and qright are equal')
elseif (abs(xc-L) < abs(xc-R))
 disp('qleft is smaller')
else
 disp('qright is smaller')
end
% Which is smaller, q(L) or q(R)?

qL = L*L + b*L + c; % q(L)
qR = R*R + b*R + c; % q(R)
if (qL == qR)
 disp(‘qleft and qright are equal’)
elseif (qL < qR)
 disp(‘qleft is smaller’)
else
 disp(‘qright is smaller’)
end
Which is smaller, $q(L)$ or $q(R)$?

\[
q_L = L^2 + bL + c; \quad q(R) = R^2 + bR + c;
\]

\[
\text{if } (q_L == q_R) \quad \text{disp(‘qleft and qright are equal’)}
\]
\[
\text{fprintf(‘q value is %f\n’, qL)}
\]

\[
\text{elseif } (q_L < q_R) \quad \text{disp(‘qleft is smaller’)}
\]

\[
\text{else} \quad \text{disp(‘qright is smaller’)}
\]

\[
\text{end}
\]
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

What if you only want to know if \(q(L)\) is close to \(q(R)\)?
% Is q(L) close to q(R)?

tol = 1e-4; % tolerance
qL = L*L + b*L + c
qR = R*R + b*R + c
if (abs(qL-qR) < tol)
 disp('qleft and qright similar')
end
Do these two fragments do the same thing?

\begin{verbatim}
% given x, y
if x>y
 disp('alpha')
else
 disp('beta')
end
\end{verbatim}

\begin{verbatim}
% given x, y
if x>y
 disp('alpha')
endif y>=x
 disp('beta')
end
\end{verbatim}

A: yes B: no
Simple \textbf{if} construct

\begin{Verbatim}
\textbf{if} \hspace{1cm} \textit{boolean expression}
\end{Verbatim}

\begin{Verbatim}
\textit{statements to execute if expression is true}
\end{Verbatim}

\textbf{else}

\begin{Verbatim}
\textit{statements to execute if expression is false}
\end{Verbatim}

\textbf{end}
Even simpler \textit{if} construct

\begin{center}
\begin{tcolorbox}[colback=gray!25]
\textbf{if} \hspace{1cm} \textit{boolean expression} \\

\textit{statements to execute if expression is true}
\end{tcolorbox}
\end{center}

\textbf{end}
The **if** construct

```plaintext
if  boolean expression1
    statements to execute if  expression1  is true
elseif  boolean expression2
    statements to execute if  expression1  is false
    but  expression2  is true
:
else
    statements to execute if all previous conditions
    are false
end
```

Can have any number of *elseif* branches
but at most one *else* branch
Things to know about the `if` construct

- ___________ branch of statements is executed
- There can be ________________ `elseif` clauses
- There can be ________________ `else` clause
- The `else` clause ________________ in the construct
- The `else` clause __________________________ (boolean expression)
Things to know about the \texttt{if} construct

- At most one branch of statements is executed
- There can be any number of \texttt{elseif} clauses
- There can be at most one \texttt{else} clause
- The \texttt{else} clause must be the last clause in the construct
- The \texttt{else} clause does not have a condition (boolean expression)
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L)\) or \(q(R)\)?
- What is the minimum value of \(q(x)\) in \([L, R]\)?
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L)\) or \(q(R)\)?
- What is the minimum value of \(q(x)\) in \([L, R]\)?
Modified Problem 3

Write a code fragment that prints “yes” if xc is in the interval and “no” if it is not.
Is \(xc \) in the interval \([L, R]\)?

\[
q(x) = x^2 + bx + c
\]

\(x_c = -\frac{b}{2} \)

\[
L \quad R
\]

No!
So what is the requirement?

% Determine whether xc is in [L,R]
xc = -b/2;

if ________________
 disp(‘Yes’)
else
 disp(‘No’)
end
So what is the requirement?

% Determine whether xc is in [L,R]
xc = -b/2;

if L<=xc && xc<=R
 disp('Yes')
else
 disp('No')
end
The value of a boolean expression is either true or false.

\[(L \leq xc) \land (xc \leq R)\]

This (compound) boolean expression is made up of two (simple) boolean expressions. Each has a value that is either true or false.

Connect boolean expressions by boolean operators:

\[\land \quad \lor \quad \neg\]