Previous Lecture (and lab):
- Variables & assignment
- Built-in functions
- Input & output
- Good programming style (meaningful variable names; use comments)

Today’s Lecture:
- Branching (conditional statements)
Announcements:

- Project 1 (P1) due Thurs, 9/6, at 11pm
- Pay attention to Academic Integrity
- You can see any TA for help, not just your discussion TA
- Consulting
 - Matlab consultants at ACCEL Green Rm (Carpenter Hall 2nd fl. computing facility)
 - 5-10pm Sunday to Thursday
- Just added CS1112? Tell your discussion TA to add you in CS1112 CMS (and tell CS1110 to drop your from their CMS)
- Piazza – “Q & A system” for all students in CS1112. Use it for clarification only—do not ask (answer) homework questions and do not give hints on homework. Will be monitored by TAs. Available tomorrow.
Quick review

■ Variable
 ■ A named memory space to store a value

■ Assignment operator: =
 ■ Let \(x \) be a variable that has a value. To give variable \(y \) the same value as \(x \), which statement below should you write?
 \[
 x = y \quad \text{or} \quad y = x
 \]

■ Script (program)
 ■ A sequence of statements saved in an m-file

■ ; (semi-colon)
 ■ Suppresses printing of the result of assignment statement
So far, all the statements in our scripts are executed in order.

We do not have a way to specify that some statements should be executed only under some condition.

We need a new language construct…
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L)\) or \(q(R)\)?
- What is the minimum value of \(q(x)\) in \([L, R]\)?
What are the critical points?
What are the critical points?

- **End points**: $x = L$, $x = R$
- $\{ x \mid q'(x) = 0 \}$
What are the critical points?

- End points: \(x = L \), \(x = R \)
- \(\{ x \mid q'(x) = 0 \} \)

\[
q(x) = x^2 + bx + c \\
q'(x) = 2x + b \\
q'(x_c) = 0 \Rightarrow x_c = -\frac{b}{2}
\]
Problem 1

Write a code fragment that prints “yes” if $q(x)$ increases across the interval and “no” if it does not.
% Quadratic \(q(x) = x^2 + bx + c \)

\[
\begin{align*}
b &= \text{input}('Enter b: '); \\
c &= \text{input}('Enter c: '); \\
L &= \text{input}('Enter L: '); \\
R &= \text{input}('Enter R: '); \\
\end{align*}
\]

% Determine whether \(q \) increases
% across \([L,R]\]

\[
xc = -b/2;
\]
The Situation

\[q(x) = x^2 + bx + c \]

\(x_c = -\frac{b}{2} \)
Does $q(x)$ increase across $[L,R]$?

$$q(x) = x^2 + bx + c$$

$$x_c = -\frac{b}{2}$$

No!
So what is the requirement?

% Determine whether \(q \) increases
% across \([L,R]\)
\[
xc = \frac{-b}{2};
\]

if __________

 fprintf('Yes\n')

else

 fprintf('No\n')

end

Relational Operators

\(<\quad\text{Less than}\)
\(>\quad\text{Greater than}\)
\(\leq\quad\text{Less than or equal to}\)
\(\geq\quad\text{Greater than or equal to}\)
\(==\quad\text{Equal to}\)
\(!=\quad\text{Not equal to}\)
So what is the requirement?

% Determine whether q increases
% across [L,R]
xc = -b/2;

if xc <= L
 fprintf(‘Yes\n’)
else
 fprintf(‘No\n’)
end

% Relational Operators
< Less than
> Greater than
\leq Less than or equal to
\geq Greater than or equal to
== Equal to
\neq Not equal to
So what is the requirement?

% Determine whether q increases across [L,R]

xc = -b/2;

if _______

 fprintf(‘Yes\n’)

else

 disp(‘No’)

end
Problem 2

Write a code fragment that prints

“qleft is smaller”
if q(L) is smaller than q(R).
If q(R) is smaller print

“qright is smaller.”
Algorithm v0

Calculate $q(L)$
Calculate $q(R)$
If $q(L) < q(R)$
 print “qleft is smaller”
Otherwise
 print “qright is smaller”
Algorithm v0.1

Calculate x_c

If distance x_c^L is smaller than distance x_c^R

print “qleft is smaller”

Otherwise

print “qright is smaller”
Do these two fragments do the same thing?

% given x, y
if x>y
 disp('alpha')
else
 disp('beta')
end

% given x, y
if y>x
 disp('beta')
else
 disp('alpha')
end

A: yes B: no
Algorithm v1

Calculate x_c

If distance x_cL is smaller than distance x_cR
 print “qleft is smaller”
Otherwise
 print “qright is smaller or equals qleft”
Algorithm v2

Calculate \(x_c \)

If distance \(x_c^L \) is same as distance \(x_c^R \)
 print “qleft and qright are equal”

Otherwise, if \(x_c^L \) is shorter than \(x_c^R \)
 print “qleft is smaller”

Otherwise
 print “qright is smaller”
% Which is smaller, q(L) or q(R)?

xc = -b/2; % x at center
if (abs(xc-L) == abs(xc-R))
 disp('qleft and qright are equal')
elseif (abs(xc-L) < abs(xc-R))
 disp('qleft is smaller')
else
 disp('qright is smaller')
end
% Which is smaller, q(L) or q(R)?

qL= L*L + b*L + c; % q(L)
qR= R*R + b*R + c; % q(R)
if (qL == qR)
 disp(‘qleft and qright are equal’)
elseif (qL < qR)
 disp(‘qleft is smaller’)
else
 disp(‘qright is smaller’)
end
Which is smaller, \(q(L)\) or \(q(R)\)?

\[q_L = L^2 + bL + c; \quad \% q(L)\]
\[q_R = R^2 + bR + c; \quad \% q(R)\]

if \((q_L == q_R)\)
 disp('qleft and qright are equal')
 fprintf('q value is %f
', qL)
elseif \((q_L < q_R)\)
 disp('qleft is smaller')
else
 disp('qright is smaller')
end
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

What if you only want to know if \(q(L)\) is close to \(q(R)\)?
% Is q(L) close to q(R)?

tol= 1e-4; % tolerance
qL= L*L + b*L + c
qR= R*R + b*R + c
if (abs(qL-qR) < tol)
 disp('qleft and qright similar')
end

Name an important parameter and define it with a comment!
Do these two fragments do the same thing?

% given x, y
if x>y
 disp('alpha')
else
 disp('beta')
end

% given x, y
if x>y
 disp('alpha')
endif y>=x
end

A: yes B: no
Simple if construct

if boolean expression

statements to execute if expression is true

else

statements to execute if expression is false

end
Even simpler \textbf{if} construct

\begin{verbatim}
if boolean expression
 statements to execute if expression is true
end
\end{verbatim}
The **if** construct

\[
\text{if } \ \text{boolean expression}1 \\
\quad \text{statements to execute if } \text{expression}1 \text{ is true} \\
\text{elseif } \ \text{boolean expression}2 \\
\quad \text{statements to execute if } \text{expression}1 \text{ is false but } \text{expression}2 \text{ is true} \\
\text{else} \\
\quad \text{statements to execute if all previous conditions are false} \\
\text{end}
\]

Can have any number of elseif branches but at most one else branch.
Things to know about the `if` construct

- At most one branch of statements is executed.
- There can be any number of `elseif` clauses.
- There can be ____________ `else` clause.
- The `else` clause _________________ in the construct.
- The `else` clause _________________ (boolean expression).
Things to know about the \texttt{if} construct

- At most one branch of statements is executed
- There can be any number of \texttt{elseif} clauses
- There can be at most one \texttt{else} clause
- The \texttt{else} clause must be the last clause in the construct
- The \texttt{else} clause does not have a condition (boolean expression)
Modified Problem 3

Write a code fragment that prints “yes” if \(x_c \) is in the interval and “no” if it is not.
So what is the requirement?

```matlab
% Determine whether xc is in
% [L,R]
xc = -b/2;

if ________________
    disp('Yes')
else
    disp('No')
end
```
So what is the requirement?

% Determine whether xc is in
% [L,R]
xc = \(-b/2\);

if \(L \leq xc \land xc \leq R\)

 disp(‘Yes’)
else

 disp(‘No’)
end
The value of a boolean expression is either true or false.

\[(L \leq xc) \land (xc \leq R)\]

This (compound) boolean expression is made up of two (simple) boolean expressions. Each has a value that is either true or false.

Connect boolean expressions by boolean operators:

- **and**: \&\&
- **or**: ||
- **not**: ~