
CS1112 Lecture 13

Lecture slides 1

 Previous Lecture:
 Discrete vs. continuous; finite vs. infinite
 Vectorized operations

 Today’s Lecture:
 Vectorized operations and plots
 2-d array—matrix

 Announcements:
 Prelim 1 tonight at 7:30pm

 Last names A-H in Olin Hall 255
 Last names I-L in Olin Hall 245
 Last names M-Z in Olin Hall 155

 Fall Break Mon & Tues: no lec, dis, office/consulting hrs.
Attendance at 10/10 (W) dis is optional, but the exercise is
required. Attend any of the 10/10 dis sections for help if you
wish.

Lecture 13 19

Initialize vectors/matrices if dimensions are known
…instead of “building” the array one component at
a time

% Build y on the fly
x=linspace(a,b,n);

for k=1:n
y(k)=myF(x);

end

% Initialize y
x=linspace(a,b,n);
y=zeros(1,n);
for k=1:n

y(k)=myF(x);
end

Much faster for large n!

Lecture 13 21

Vectorized code
—a Matlab-specific feature

 Code that performs element-by-element
arithmetic/relational/logical operations on array
operands in one step

 Scalar operation: x + y
where x, y are scalar variables

 Vectorized code: x + y
where x and/or y are vectors. If x and y are both
vectors, they must be of the same shape and length

See Sec 4.1 for list of vectorized
arithmetic operations

Lecture 13 22

Vectorized addition

2 8.51x

1 102y+

3 9.53z=

Matlab code: z= x + y

Lecture 13 24

Vectorized multiplication

2 8.51a

1 102b×

2 802c=

Matlab code: c= a .* b

Lecture 13 25

Vectorized
element-by-element arithmetic operations
on arrays

+

-

.*

./

A dot (.) is necessary in front of these math operators

.^

See full list of ops in §4.1

CS1112 Lecture 13

Lecture slides 2

Lecture 13 26

Shift

2 8.51

x

y+

5 113.54z=

Matlab code: z= x + y

3

Lecture 13 27

Reciprocate

2 8.51

x

y/

.5 .12521z=

Matlab code: z= x ./ y

1

Lecture 13 28

./

A dot (.) is necessary in front of these math operators

Vectorized
element-by-element arithmetic operations between an
array and a scalar

+

-

*

/

+

-

*

.^ .^

.* .* ./The dot in not necessary but OK, ,

See full list of ops in §4.1

Generating tables and plots

x sin(x)
0.000 0.000
0.784 0.707
1.571 1.000
2.357 0.707
3.142 0.000
3.927 -0.707
4.712 -1.000
5.498 -0.707
6.283 0.000

x= linspace(0,2*pi,9);
y= sin(x);
plot(x,y)

−1 0 1 2 3 4 5 6 7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sin(x)

Note: x, y are shown in columns due to space limitation; they should be rows.

Lecture 13 33

Built-in function linspace

x= linspace(1,3,5)

1.0 1.5 2.0 2.5 3.0x

x= linspace(0,1,101)

0.00 0.01 0.02 ... 0.99 1.00x

Left endpoint
Right endpoint

Number
of points

Lecture 13 34

Built-in functions accept arrays

x sin(x)
0.00 0.0
1.57 1.0
3.14 0.0
4.71 -1.0
6.28 0.0

0.00 1.57 3.14 4.71 6.28

sin

0.00 1.00 0.00 -1.00 0.00

and return arrays

How did we get all the sine values?

CS1112 Lecture 13

Lecture slides 3

Lecture 13 39

Can we plot this?

21

)2/exp()5sin(
)(

x

xx
xf




 for
-2 <= x <= 3

x = linspace(-2,3,200);
y = sin(5*x).*exp(-x/2)./(1 + x.^2);
plot(x,y)

Element-by-element arithmetic
operations on arrays

Yes!

See plotComparison.m

Lecture 13 40

Element-by-element arithmetic operations on arrays…
Also called “vectorized code”

x = linspace(-2,3,200);
y = sin(5*x).*exp(-x/2)./(1 + x.^2);

Contrast with scalar operations that we’ve used
previously…

a = 2.1;
b = sin(5*a);

Lecture 13 42

Storing and using data in tables

A company has 3 factories that make 5
products with these costs:

Connections
between webpages

0 0 1 0 1 0 0
1 0 0 1 1 1 0
0 1 0 1 1 1 1
1 0 1 1 0 1 0
0 0 1 1 0 1 1
0 0 1 0 1 0 1
0 1 1 0 1 1 0

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

What is the best way to fill a given
purchase order?

Lecture 13 43

2-d array: matrix

 An array is a named collection of like data organized
into rows and columns

 A 2-d array is a table, called a matrix
 Two indices identify the position of a value in a matrix,

e.g.,
mat(r,c)

refers to component in row r, column c of matrix mat
 Array index starts at 1
 Rectangular: all rows have the same #of columns

c

r

Lecture 13 44

Creating a matrix

 Built-in functions: ones, zeros, rand
 E.g., zeros(2,3) gives a 2-by-3 matrix of 0s

 “Build” a matrix using square brackets, [], but
the dimension must match up:
 [x y] puts y to the right of x
 [x; y] puts y below x
 [4 0 3; 5 1 9] creates the matrix
 [4 0 3; ones(1,3)] gives
 [4 0 3; ones(3,1)] doesn’t work

4 0 3

5 1 9

4 0 3

1 1 1

Lecture 13 45

Working with a matrix:
size and individual components

Given a matrix M

[nr, nc]= size(M) % nr is #of rows,
% nc is #of columns

nr= size(M, 1) % # of rows
nc= size(M, 2) % # of columns

M(2,4)= 1;
disp(M(3,1))
M(1,nc)= 4;

2 0.5-1 -3

52 7.581 2

5 98.5-3 10

3 768 7

CS1112 Lecture 13

Lecture slides 4

Lecture 13 46

% What will M be?
M = [ones(1,3); 1:4]

1 1 1 0
1 2 3 4

1 1 1
1 2 3

Error – M not created

A

B

C

Lecture 13 48

A= [0 0]
A= [A’ ones(2,1)]
A= [0 0 0 0; A A]

What will A be?

Lecture 13 49

Example: minimum value in a matrix

function val = minInMatrix(M)
% val is the smallest value in matrix M

Lecture 13 51

Pattern for traversing a matrix M

[nr, nc] = size(M)
for r= 1:nr

% At row r
for c= 1:nc

% At column c (in row r)
%
% Do something with M(r,c) …

end
end

Lecture 13 52

Matrix example: Random Web

 N web pages can be represented by an N-by-
N Link Array A.

 A(i,j) is 1 if there is a link on webpage j to
webpage i

 Generate a random link array and display the
connectivity:
 There is no link from a page to itself
 If i≠j then A(i,j) = 1 with probability

 There is more likely to be a link if i is close to j
||1

1
ji

Lecture 13 53

function A = RandomLinks(n)
% A is n-by-n matrix of 1s and 0s
% representing n webpages

A = zeros(n,n);
for i=1:n
for j=1:n
r = rand(1);
if i~=j && r<= 1/(1 + abs(i-j));

A(i,j) = 1;
end

end
end

CS1112 Lecture 13

Lecture slides 5

Lecture 13 54

0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1 1 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

Random web
N = 20

Lecture 13 55

100 Web pages arranged in a circle.
Next display the links….

Represent the web pages graphically…

Lecture 13 56

Line black as it leaves page j, red when it
arrives at page i

Represent the web pages graphically…

Lecture 13 57

ShowRandomLinks.m

Lecture 13 58

% Given an nr-by-nc matrix M.
% What is A?
for r= 1: nr

for c= 1: nc
A(c,r)= M(r,c);

end
end

a. A is M with the columns in reverse order
b. A is M with the rows in reverse order
c. A is the transpose of M
d. A and M are the same

A

B

C
D

Lecture 13 60

% Given an n-by-m matrix A.
% What is this operation?
for g= 1: n

for h= 1: floor(m/2)
A(g,h)= A(g, m-h+1);

end
end

a. Reflect the right half of A
onto the left half

b. Reflect the bottom half of
A onto the top half

A

B

