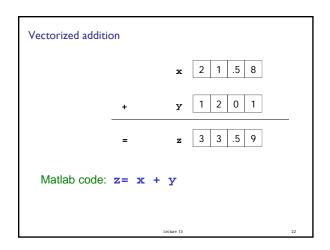
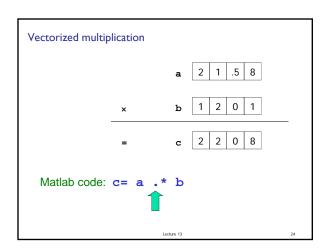
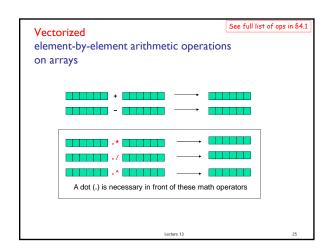
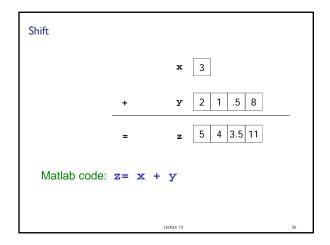

- Previous Lecture:
 - Discrete vs. continuous; finite vs. infinite
 - Vectorized operations
- Today's Lecture:
 - Vectorized operations and plots
 - 2-d array—matrix
- Announcements:
 - Prelim I tonight at 7:30pm
 - Last names A-H in Olin Hall 255
 - Last names I-L in Olin Hall 245
 - Last names M-Z in Olin Hall 155
 - Fall Break Mon & Tues: no lec, dis, office/consulting hrs.
 <u>Attendance</u> at 10/10 (W) dis is <u>optional</u>, but the exercise is required. Attend any of the 10/10 dis sections for help if you wish.

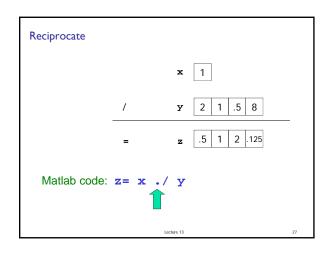
Vectorized code

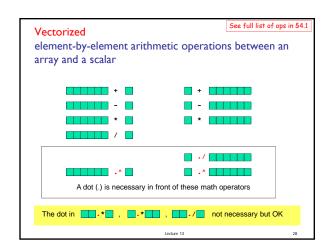

-a Matlab-specific feature

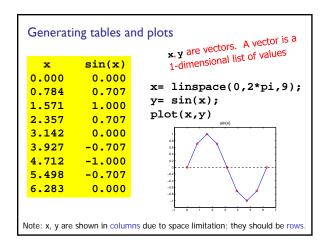

See Sec 4.1 for list of vectorized arithmetic operations

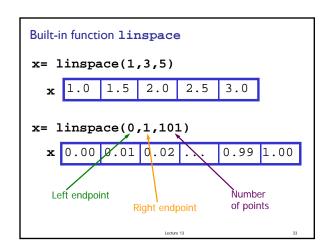

- Code that performs element-by-element arithmetic/relational/logical operations on array operands in one step
- Scalar operation: x + y where x, y are scalar variables
- Vectorized code: x + y

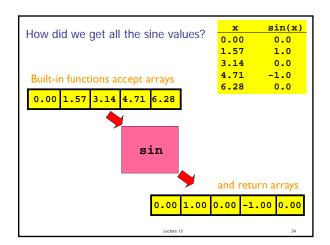

where x and/or y are vectors. If x and y are both vectors, they must be of the same shape and length

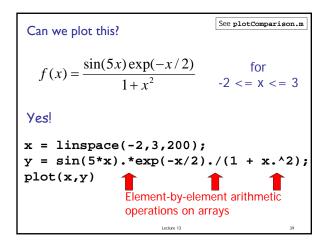

ure 13

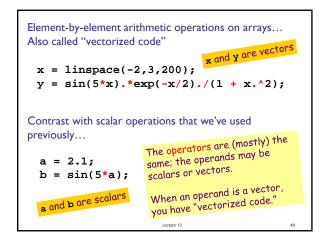


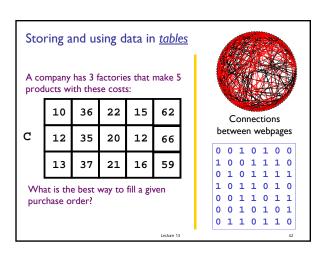


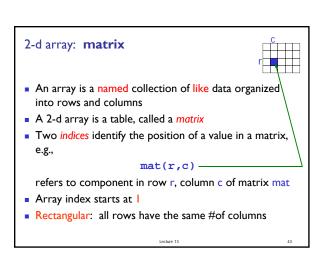












Creating a matrix

Built-in functions: ones, zeros, rand
E.g., zeros(2,3) gives a 2-by-3 matrix of 0s

"Build" a matrix using square brackets, [], but the dimension must match up:

[x y] puts y to the right of x

[x; y] puts y below x

[4 0 3; 5 | 9] creates the matrix

[4 0 3; ones(1,3)] gives

[4 0 3; ones(3,1)] doesn't work

```
Working with a matrix:
size and individual components

Given a matrix M

Given a matrix M

5 -3 8.5 9 10
52 81 .5 7 2

[nr, nc]= size(M) % nr is #of rows,
% nc is #of columns

nr= size(M, 1) % # of rows
nc= size(M, 2) % # of columns

M(2,4)= 1;
disp(M(3,1))
M(1,nc)= 4;
```

```
What will A be?

A= [0 0]
A= [A' ones(2,1)]
A= [0 0 0 0; A A]
```

```
Example: minimum value in a matrix

function val = minInMatrix(M)

% val is the smallest value in matrix M
```

```
Pattern for traversing a matrix M

[nr, nc] = size(M)

for r= l:nr

% At row r

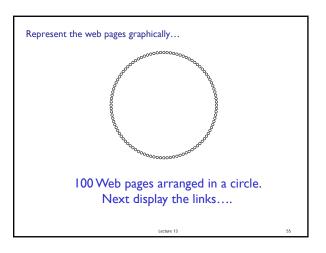
for c= l:nc

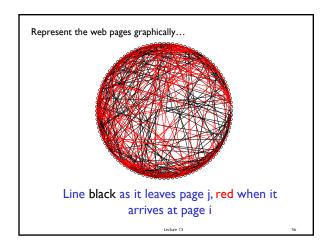
% At column c (in row r)

%

% Do something with M(r,c) ...

end


end
```


```
Matrix example: Random Web
```

- N web pages can be represented by an N-by-N Link Array A.
- A(i,j) is 1 if there is a link on webpage j to webpage i
- Generate a random link array and display the connectivity:
 - There is no link from a page to itself
 - If $i \neq j$ then A(i,j) = 1 with probability $\frac{1}{1+|i-j|}$ There is more likely to be a link if i is close to j

```
function A = RandomLinks(n)
% A is n-by-n matrix of 1s and 0s
% representing n webpages

A = zeros(n,n);
for i=1:n
   for j=1:n
       r = rand(1);
       if i~=j && r<= 1/(1 + abs(i-j));
            A(i,j) = 1;
       end
   end
end
end</pre>
```


ShowRandomLinks.m

```
% Given an nr-by-nc matrix M.
% What is A?
for r= 1: nr
    for c= 1: nc
        A(c,r)= M(r,c);
    end
end

A is M with the columns in reverse order
B A is M with the rows in reverse order
C A is the transpose of M
D A and M are the same
```

```
% Given an n-by-m matrix A.
% What is this operation?
for g= 1: n
    for h= 1: floor(m/2)
        A(g,h)= A(g, m-h+1);
    end
end

A Reflect the right half of A
    onto the left half
B Reflect the bottom half of
    A onto the top half
```