Iterators: Iterables Outside of For-Loops

11/26/23

* Iterators can manually extract elements
= Get each element with the next() function
= Keep going until you reach the end
= Ends with a StopIteration (Why?)

¢ Can create iterators with iter() function
>>> g = iter([1,5,3])
>>> next(a)
1
>>> next(a)
5

Must be a

iterable

Iterators are Classes

class rangeRiter(object):

"""Tterator class for squares of a range
Attribute _limit: end of range

Attribute _pos: current spot of iterator

def __next__ (self):
"""Returns the next element""
if self._pos >= self._limit:
‘ raise Stoplteration()
else:
value = self._pos*self._pos
self._pos +=1
return value

Raise error when
gone too far

Iterables are Also Classes

class range2(object):
"""Tterable class for squares of a range""

def __init_ (self,n):
""Initializes a squares iterable"
self._limit =n

def __iter (self): 270 e o

"""Returns a new iterator""

return rangeliter(self. limit
Returns an iterable

Iterators are Hard to Write!

 Has the same problem as GUI applications
= We have a hidden loop
= All loop variables are now attributes
= Similar to inter-frame/intra-frame reasoning
* Would be easier if loop were not hidden
= Idea: Write this as a function definition
= Function makes loop/loop variables visible
 But iterators “return” multiple values
= So how would this work?

The yield Statement

* Format: yield <expression>
= Used to produce a value
= But it does not stop the “function”
= Useful for making iterators
* But: These are not normal functions

= Presence of a yield makes a generator

= Function that returns an iterator

The Generator approach

def rangeRiter(n): >>> g = rangeliter(3)
nnn >>> a'

Essentially

Generator for the squares <generator
a constructor

of numbers O to n-1 >>> next(a)
0

Precon: nisanint >=0 >>> next(a)
nn l

for x in range(n): >>> next(a)
yield x*x 4

What Happens on a Function Call?

Visualize | Execute Code | Edit Code Heap primitives Use a

Creates
a generator

oncton
ge2iter(n)

Globg
def rangeiter(n): o!

"““Generator for a range of squares""" global
for x in range(n):
ield x*x
y a |2 @

print('Ended loop for '+str(x)) aeneretor

a = range2iter(3) Frames

range2iter 141

ad x = next(a)
y = next(a)
2 = next(a)

W = next(a) No call
frame

<cFist <Back Step30f20 Fowerd> Last>>

11/26/23

next() Initiates a Function Call

Visualize = Execute Code Edit Code Heap primitives Use arrows

Global Object:
def rangediter(n): obals Jocts

"""Generator for a range of squares""" global id1:function
- for x in range(n)
yield x*x
print('Ended loop for '+str(x))

range2iter 41

Comes from
original call

a iz

a = range2iter(3) Frameg
range2iter

n 3

X = next(a)
y = next(a)
z = next(a)
W = next(a)

Frame for
next()

<cfirst <Back Step4of20 Foward> Last>>

Generators Are Easy

* They replace the accumulator pattern
= Function input is an iterable (string, list, tuple)
= Function output typically a transformed copy
= Old way: Accumulate a new list or tuple
= New way: Yield one element at a time

» New way makes an iterator (not iterable)
= So can only be used once!

= But easily turned into a list or tuple

Accumulators: The Old Way

def add_one(lst):
""Returns copy with 1 added to every element
Precond: Ist is a list of all numbers™"
copy =[] # accumulator
for x in Ist:
x=x+1
copy.append(x)
return copy

Generators: The New Way

def add_one(input)
""Generates 1 added to each element of input

Precond: input is a iterable of all numbers™""

for x in input :

yield x +1

yield eliminates

the accumlator

10

Chaining Generators

* Generators can be chained together

= Take an iterator/iterable as input

= Produce an iterator as output

= Qutput of one generator = input of another
* Powerful programming technique

input = (S average =S =) output

11

12

