
11/26/23

1

Iterators: Iterables Outside of For-Loops

• Iterators can manually extract elements
§ Get each element with the next() function
§ Keep going until you reach the end
§ Ends with a StopIteration (Why?)

• Can create iterators with iter() function
>>> a = iter([1,5,3])
>>> next(a)
1
>>> next(a)
5

Must be a
iterable

1

Iterators are Classes

class range2iter(object):
 """Iterator class for squares of a range"""
 # Attribute _limit: end of range
 # Attribute _pos: current spot of iterator
 …
 def __next__(self):
 """Returns the next element"""
 if self._pos >= self._limit:
 raise StopIteration()
 else:
 value = self._pos*self._pos
 self._pos += 1
 return value

How far to go

How far we are

Raise error when
gone too far

2

Iterables are Also Classes

class range2(object):
 """Iterable class for squares of a range"""

 def __init__(self,n):
 """Initializes a squares iterable"""
 self._limit = n

 def __iter__(self):
 """Returns a new iterator"""
 return range2iter(self._limit)

Defines the
iter() function

Returns an iterable

3

Iterators are Hard to Write!

• Has the same problem as GUI applications
§ We have a hidden loop
§ All loop variables are now attributes
§ Similar to inter-frame/intra-frame reasoning

• Would be easier if loop were not hidden
§ Idea: Write this as a function definition
§ Function makes loop/loop variables visible

• But iterators “return” multiple values
§ So how would this work?

4

The yield Statement

• Format: yield <expression>
§ Used to produce a value
§ But it does not stop the “function”
§ Useful for making iterators

• But: These are not normal functions
§ Presence of a yield makes a generator
§ Function that returns an iterator

5

The Generator approach

def range2iter(n):
 """
 Generator for the squares
 of numbers 0 to n-1

 Precon: n is an int >= 0
 """
 for x in range(n):
 yield x*x

>>> a = range2iter(3)
>>> a
<generator object>
>>> next(a)
0
>>> next(a)
1
>>> next(a)
4

Essentially
a constructor

6

11/26/23

2

What Happens on a Function Call?

No call
frame

Creates
a generator

7

next() Initiates a Function Call

Frame for
next()

Comes from
original call

8

Generators Are Easy

• They replace the accumulator pattern
§ Function input is an iterable (string, list, tuple)
§ Function output typically a transformed copy
§ Old way: Accumulate a new list or tuple
§ New way: Yield one element at a time

• New way makes an iterator (not iterable)
§ So can only be used once!
§ But easily turned into a list or tuple

9

Accumulators: The Old Way

def add_one(lst):
 """Returns copy with 1 added to every element

 Precond: lst is a list of all numbers"""
 copy = [] # accumulator
 for x in lst:
 x = x +1
 copy.append(x)
 return copy

10

Generators: The New Way

def add_one(input)
 """Generates 1 added to each element of input

 Precond: input is a iterable of all numbers"""

 for x in input :
 yield x +1

Much
Simpler!

yield eliminates
the accumlator

11

Chaining Generators

• Generators can be chained together
§ Take an iterator/iterable as input
§ Produce an iterator as output
§ Output of one generator = input of another

• Powerful programming technique

evens average add_one outputinput

12

