
Advanced Sorting

Lecture 26

Announcements for This Lecture

Exam & Assignments Optional Videos

• ALL all are now posted
§ Lesson 30 for today
§ Lesson 28 is next week

11/21/23

• Prelim, TONIGHT at 7:30
§ See webpage for rooms
§ Make-ups all resolved!

• Graded by next Thursday
• A6 is now graded

§ Mean: 92.3 Median: 95
§ Time: 16.4hrs Std Dev: 9hr
§ A: 89 (80%), B: 70 (17%)

• A7 focus of last week of class
Advanced Sorting 2

Recall Our Problem

• Both insertion, selection sort are nested loops
§ Outer loop over each element to sort
§ Inner loop to put next element in place
§ Each loop is n steps. n×n = n2

• To do better we must eliminate a loop
§ But how do we do that?
§ What is like a loop? Recursion!
§ First need an intermediate algorithm

11/21/23 Advanced Sorting 3

The Partition Algorithm

• Given a list segment b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] to get this answer

3 5 4 1 6 2 3 8 1 b
h k

change:

into 1 2 1 3 5 4 6 3 8b
h i k

1 2 3 1 3 4 5 6 8b
h i k

or

• x is called the pivot value
§ x is not a program variable
§ denotes value initially in b[h]

x ?

h k

Start: b

<= x x >= x

h i i+1 k

Goal: b

Designing the Partition Algorithm

• Given a list b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] to get this answer
x ?

h k

Start: b

<= x x >= x

h i i+1 k

Goal: b

<= x x ? >= x

h i j k

In-Progress: b

Indices b, h important!
Might partition only part

Implementating the Partition Algorithm
def partition(b, h, k):
 """Partition list b[h..k] around a pivot x = b[h]"""
 i = h; j = k+1; x = b[h]

 while i < j-1:
 if b[i+1] >= x:
 # Move to end of block.
 swap(b,i+1,j-1)
 j = j - 1
 else: # b[i+1] < x
 swap(b,i,i+1)
 i = i + 1

 return i

partition(b,h,k), not partition(b[h:k+1])
Remember, slicing always copies the list!

We want to partition the original list

11/21/23 Advanced Sorting 6

Partition Algorithm Implementation
def partition(b, h, k):
 """Partition list b[h..k] around a pivot x = b[h]"""
 i = h; j = k+1; x = b[h]

 while i < j-1:
 if b[i+1] >= x:
 # Move to end of block.
 swap(b,i+1,j-1)
 j = j - 1
 else: # b[i+1] < x
 swap(b,i,i+1)
 i = i + 1

 return i

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

11/21/23 Advanced Sorting 7

Partition Algorithm Implementation
def partition(b, h, k):
 """Partition list b[h..k] around a pivot x = b[h]"""
 i = h; j = k+1; x = b[h]

 while i < j-1:
 if b[i+1] >= x:
 # Move to end of block.
 swap(b,i+1,j-1)
 j = j - 1
 else: # b[i+1] < x
 swap(b,i,i+1)
 i = i + 1

 return i

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

1 2 1 3 5 0 6 3 8
h i i+1 j k

11/21/23 Advanced Sorting 8

Partition Algorithm Implementation
def partition(b, h, k):
 """Partition list b[h..k] around a pivot x = b[h]"""
 i = h; j = k+1; x = b[h]

 while i < j-1:
 if b[i+1] >= x:
 # Move to end of block.
 swap(b,i+1,j-1)
 j = j - 1
 else: # b[i+1] < x
 swap(b,i,i+1)
 i = i + 1

 return i

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

1 2 1 3 5 0 6 3 8
h i i+1 j k

1 2 1 3 0 5 6 3 8
h i j k

11/21/23 Advanced Sorting 9

Partition Algorithm Implementation
def partition(b, h, k):
 """Partition list b[h..k] around a pivot x = b[h]"""
 i = h; j = k+1; x = b[h]

 while i < j-1:
 if b[i+1] >= x:
 # Move to end of block.
 swap(b,i+1,j-1)
 j = j - 1
 else: # b[i+1] < x
 swap(b,i,i+1)
 i = i + 1

 return i

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

1 2 1 3 5 0 6 3 8
h i i+1 j k

1 2 1 3 0 5 6 3 8
h i j k

1 2 1 0 3 5 6 3 8
h i j k

11/21/23 Advanced Sorting 10

Why is this Useful?

• Will use this algorithm to replace inner loop
§ The inner loop cost us n swaps every time

• Can this reduce the number of swaps?
§ Worst case is k-h swaps
§ This is n if partitioning the whole list
§ But less if only partitioning part

• Idea: Break up list and partition only part?
§ This is Divide-and-Conquer!

11/21/23 Advanced Sorting 11

Sorting with Partitions

• Given a list segment b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] to get this answer

x ?

h k

Start: b

<= x x >= x

h i i+1 k

Goal: b

Recursive partitions = sorting
§ Called QuickSort (why???)
§ Popular, fast sorting technique

Partition Recursively

11/21/23 Advanced Sorting 12

Sorting with Partitions

• Given a list segment b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] to get this answer

x ?

h k

Start: b

<= x x >= x

h i i+1 k

Goal: b

Recursive partitions = sorting
§ Called QuickSort (why???)
§ Popular, fast sorting technique

Partition Recursively

y ?

11/21/23 Advanced Sorting 13

Sorting with Partitions

• Given a list segment b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] to get this answer

x ?

h k

Start: b

<= x x >= x

h i i+1 k

Goal: b

Recursive partitions = sorting
§ Called QuickSort (why???)
§ Popular, fast sorting technique

Partition Recursively

y >= y<= y

11/21/23 Advanced Sorting 14

QuickSort

def quick_sort(b, h, k):

 """Sort the array fragment b[h..k]"""

 if b[h..k] has fewer than 2 elements:

 return

 j = partition(b, h, k)

 # b[h..j–1] <= b[j] <= b[j+1..k]

 # Sort b[h..j–1] and b[j+1..k]

 quick_sort (b, h, j–1)

 quick_sort (b, j+1, k)

• Worst Case:
array already sorted
§ Or almost sorted
§ n2 in that case

• Average Case:
array is scrambled
§ n log n in that case
§ Best sorting time!

x ?

h k
pre: b

<= x x >= x

h i i+1 k
post: b

11/21/23 Advanced Sorting 15

So Does that Solve It?

• Worst case still seems bad! Still n2
§ But only happens in small number of cases
§ Just happens that case is common (already sorted)

• Can greatly reduce issue with randomization
§ Swap start with random element in list
§ Now pivot is random and already sorted unlikely

x ? y ?

h i k

Start: b

11/21/23 Advanced Sorting 16

So Does that Solve It?

• Worst case still seems bad! Still n2
§ But only happens in small number of cases
§ Just happens that case is common (already sorted)

• Can greatly reduce issue with randomization
§ Swap start with random element in list
§ Now pivot is random and already sorted unlikely

x ? y ?

h i k

Start: b

Makes it “good enough”
for most applications

11/21/23 Advanced Sorting 17

Can We Do Better?

• Recursion seems to be the solution
§ Partitioned the list into two halves
§ Recursively sorted each half

• How about a traditional divide-and-conquer?
§ Divide the list into two halves
§ Recursively sort the two halves
§ Combine the two sort halves

• How do we do the last step?

11/21/23 Advanced Sorting 18

Combining Two Sorted Lists

11/21/23 Advanced Sorting 19

Combining Two Sorted Lists

11/21/23 Advanced Sorting 20

Pick from list
with the least

Combining Two Sorted Lists

11/21/23 Advanced Sorting 21

Pick from list
with the least

Combining Two Sorted Lists

11/21/23 Advanced Sorting 22

Pick from list
with the least

Combining Two Sorted Lists

11/21/23 Advanced Sorting 23

Pick from list
with the least

Combining Two Sorted Lists

11/21/23 Advanced Sorting 24

Pick from list
with the least

Combining Two Sorted Lists

11/21/23 Advanced Sorting 25

Pick from list
with the least

Combining Two Sorted Lists

11/21/23 Advanced Sorting 26

Pick from list
with the least

Combining Two Sorted Lists

11/21/23 Advanced Sorting 27

Pick from list
with the least

Combining Two Sorted Lists

11/21/23 Advanced Sorting 28

Pick from list
with the least

Combining Two Sorted Lists

11/21/23 Advanced Sorting 29

Pick from list
with the least

Combining Two Sorted Lists

11/21/23 Advanced Sorting 30

Finish off
remaining list

Combining Two Sorted Lists

11/21/23 Advanced Sorting 31

Finish off
remaining list

Merge Sort

def merge_sort(b, h, k):

 """Sort the array fragment b[h..k]"""

 if b[h..k] has fewer than 2 elements:

 return

 # Divide and recurse

 mid = (h+k)//2

 merge_sort (b, h, m)

 merge_sort (b, m+1, k)

 # Combine

 merge(b,h,mid,k) # Merge halves into b

• Seems simpler than qsort
§ Straight-forward d&c
§ Merge easy to implement

• What is the catch?
§ Merge requires a copy
§ We did not allow copies
§ Copying takes n steps
§ But so does merge/partition

• n log n ALWAYS

11/21/23 Advanced Sorting 32

Merge Sort

def merge_sort(b, h, k):

 """Sort the array fragment b[h..k]"""

 if b[h..k] has fewer than 2 elements:

 return

 # Divide and recurse

 mid = (h+k)//2

 merge_sort (b, h, m)

 merge_sort (b, m+1, k)

 # Combine

 merge(b,h,mid,k) # Merge halves into b

• Seems simpler than qsort
§ Straight-forward d&c
§ Merge easy to implement

• What is the catch?
§ Merge requires a copy
§ We did not allow copies
§ Copying takes n time
§ But so does merge/partition

• n log n ALWAYS

11/21/23 Advanced Sorting 33

Proof beyond
scope of course

What Does Python Use?

• The sort() method is Timsort
§ Invented by Tim Peters in 2002
§ Combination of insertion sort and merge sort

• Why a combination of the two?
§ Merge sort requires copies of the data
§ Copying pays off for large lists, but not small lists
§ Insertion sort is not that slow on small lists
§ Balancing two properly still gives n log n

11/21/23 Advanced Sorting 34

What Does Python Use?

• The sort() method is Timsort
§ Invented by Tim Peters in 2002
§ Combination of insertion sort and merge sort

• Why a combination of the two?
§ Merge sort requires copies of the data
§ Copying pays off for large lists, but not small lists
§ Insertion sort is not that slow on small lists
§ Balancing two properly still gives n log n

11/21/23 Advanced Sorting 35

Quicksort is 1959!

What Does Python Use?

• The sort() method is Timsort
§ Invented by Tim Peters in 2002
§ Combination of insertion sort and merge sort

• Why a combination of the two?
§ Merge sort requires copies of the data
§ Copying pays off for large lists, but not small lists
§ Insertion sort is not that slow on small lists
§ Balancing two properly still gives n log n

11/21/23 Advanced Sorting 36

Most of time
spent here

What Does Python Use?

• The sort() method is Timsort
§ Invented by Tim Peters in 2002
§ Combination of insertion sort and merge sort

• Why a combination of the two?
§ Merge sort requires copies of the data
§ Copying pays off for large lists, but not small lists
§ Insertion sort is not that slow on small lists
§ Balancing two properly still gives n log n

11/21/23 Advanced Sorting 37

This strategy allows
AI to find even better

sorting algorithms

