Lecture 25

Searching & Sorting
Announcements for This Lecture

Prelim 2

- **Prelim, Tuesday at 7:30**
 - See webpage for rooms
 - Make-ups are all emailed!
 - Contact Amy if no email
- **Material up to Nov. 9**
 - Recursion + Loops + Classes
 - Review **Sun Nov. 19 at 6pm**
- **Graded after Break**
 - Need time for make-ups

Assignments

- **A6** still not graded
 - Will be done by next week
 - Staff still working on it
- **A7** is due **Monday Dec. 4**
 - Extensions are possible
 - Work on it during lab

11/16/23

Searching & Sorting
def linear_search(v,b):
 """Returns: first occurrence of v in b (-1 if not found)
 Precond: b a list of number, v a number
 """
 # Loop variable
 i = 0
 while i < len(b) and b[i] != v:
 i = i + 1
 if i == len(b): # not found
 return -1
 return i

How many entries do we have to look at?

11/16/23 Searching & Sorting
def linear_search(v, b):
 """Returns: first occurrence of v in b (-1 if not found)
 Precond: b a list of number, v a number
 """
 # Loop variable
 i = 0
 while i < len(b) and b[i] != v:
 i = i + 1
 if i == len(b): # not found
 return -1
 return i

How many entries do we have to look at?

All of them!
def linear_search(v,b):
 """Returns: last occurrence of v in b (-1 if not found)
 Precond: b a list of number, v a number
 """
 # Loop variable
 i = len(b)-1
 while i >= 0 and b[i] != v:
 i = i - 1
 # Equals -1 if not found
 return i

How many entries do we have to look at?
All of them!
Is There a Better Way?

• Thinking of number 0..100
 ▪ You get to guess number
 ▪ I tell you higher or lower
 ▪ Continue until get it right

• **Goal:** Keep # guesses low
 ▪ Use my answers to help

• **Strategy?**
 ▪ Start guess in the middle
 ▪ Answer eliminates half
 ▪ Go to middle of remaining
Is There a Better Way?

• Thinking of number 0..100
 ▪ You get to guess number
 ▪ I tell you higher or lower
 ▪ Continue until get it right

• **Goal:** Keep # guesses low
 ▪ Use my answers to help

• **Strategy?**
 ▪ Start guess in the middle
 ▪ Answer eliminates half
 ▪ Go to middle of remaining
Is There a Better Way?

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right
- **Goal:** Keep # guesses low
 - Use my answers to help
- **Strategy?**
 - Start guess in the middle
 - Answer eliminates half
 - Go to middle of remaining
Is There a Better Way?

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right
- **Goal:** Keep # guesses low
 - Use my answers to help
- **Strategy?**
 - Start guess in the middle
 - Answer eliminates half
 - Go to middle of remaining
Is There a Better Way?

• Thinking of number 0..100
 ▪ You get to guess number
 ▪ I tell you higher or lower
 ▪ Continue until get it right

• **Goal:** Keep # guesses low
 ▪ Use my answers to help

• **Strategy?**
 ▪ Start guess in the middle
 ▪ Answer eliminates half
 ▪ Go to middle of remaining
def binary_search(v,b):

 # Loop variable(s)
 i = 0, j = len(b)

 while i < j and b[i] != v:
 mid = (i+j)//2
 if b[mid] < v:
 i = mid+1
 elif b[mid] > v:
 j = mid
 else:
 return mid

 return -1 # not found

Requires that the data is sorted!

But few checks!
Observation About Sorting

• Sorting data can speed up searching
 ▪ Sorting takes time, but do it once
 ▪ Afterwards, can search many times

• Not just searching. Also speeds up
 ▪ Duplicate elimination in data sets
 ▪ Data compression
 ▪ Physics computations in computer games

• Why it is a major area of computer science
The Sorting Challenge

- **Given:** A list of numbers
- **Goal:** Sort those numbers using only
 - Iteration (while-loops or for-loops)
 - Comparisons (< or >)
 - Assignment statements
- **Why?** For proper **analysis.**
 - Methods/functions come with hidden costs
 - Everything above has no hidden costs
 - Each comparison or assignment is “1 step”
This Requires Some Notation

• As the list is sorted…
 ▪ Part of the list will be sorted
 ▪ Part of the list will not be sorted

• Need a way to refer to portions of the list
 ▪ Notation to refer to sorted/unsorted parts

• And have to do it without slicing!
 ▪ Slicing makes a copy
 ▪ Want to sort original list, not a copy
This Requires Some Notation

- As the list is sorted...
 - Part of the list **will** be sorted
 - Part of the list will **not** be sorted
- Need a way to refer to portions of the list
 - Notation to refer to sorted/unsorted parts
- And have to do it **without** slicing!
 - Slicing makes a **copy**
 - Want to sort original list, not a copy

But we will be less formal than in previous years!
Range Notation

- \text{m..n} is a range containing \text{n+1-m} values
 - 2..5 contains 2, 3, 4, 5. Contains 5+1 – 2 = 4 values
 - 2..4 contains 2, 3, 4. Contains 4+1 – 2 = 3 values
 - 2..3 contains 2, 3. Contains 3+1 – 2 = 2 values
 - 2..2 contains 2. Contains 2+1 – 2 = 1 values
 - 2..1 contains ???

- The notation \text{m..n}, always implies that \text{m} \leq \text{n+1}
 - So you can assume that even if we do not say it
 - If \text{m} = \text{n+1}, the range has 0 values
Range Notation

- **m..n** is a range containing \(n+1-m\) values
 - 2..5 contains 2, 3, 4, 5. Contains \(5+1-2 = 4\) values
 - 2..4 contains 2, 3, 4. Contains \(4+1-2 = 3\) values
 - 2..3 contains 2, 3. Contains \(3+1-2 = 2\) values
 - 2..2 contains 2. Contains \(2+1-2 = 1\) values
 - 2..1 contains ???

- The notation **m..n**, always implies that \(m \leq n+1\)
 - So you can assume that even if we do not say it
 - If \(m = n+1\), the range has 0 values
Horizontal Notation

- Want a pictorial way to visualize this sorting
 - Represent the list as a long rectangle
 - We saw this idea in divide-and-conquer

- Do **not** show individual boxes
 - Just dividing lines between regions
 - Label dividing lines with indices
 - But index is either left or right of dividing line

\[
\begin{array}{c}
0 & h & k \\
b & & \\
\end{array}
\]

\[
(h+1) - h = 1
\]
Horizontal Notation

- Label regions with properties
 - Example: Sorted or ???

```
0      k      n
b  sorted  ???
```

- $b[0..k-1]$ is sorted
- $b[k..n-1]$ unknown (might be sorted)

- Picture allows us to track progress
Visualizing Sorting

Start: b

Goal: b

In-Progress: b
Insertion Sort

\[i = 0 \]

while \(i < n \):

 # Push \(b[i] \) down into its
 # sorted position in \(b[0..i] \)

 \(i = i + 1 \)

Remember the restrictions!
Insertion Sort: Moving into Position

```python
i = 0
while i < n:
    push_down(b, i)
    i = i + 1

def push_down(b, i):
    j = i
    while j > 0:
        if b[j-1] > b[j]:
            swap(b, j-1, j)
        j = j - 1
```

Swap shown in the lecture about lists

<table>
<thead>
<tr>
<th>0</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 4 4 6 6 7</td>
<td>5</td>
</tr>
</tbody>
</table>
Insertion Sort: Moving into Position

```python
i = 0
while i < n:
    push_down(b, i)
    i = i + 1

def push_down(b, i):
    j = i
    while j > 0:
        if b[j-1] > b[j]:
            swap(b, j-1, j)
        j = j - 1
```

Swap shown in the lecture about lists
Insertion Sort: Moving into Position

\[
i = 0
\]

\[
\text{while } i < n:
\]
\[
\quad \text{push_down}(b,i)
\]
\[
\quad i = i + 1
\]

\[
\text{def push_down}(b, i):
\]
\[
\quad j = i
\]
\[
\quad \text{while } j > 0:
\]
\[
\quad \quad \text{if } b[j-1] > b[j]:
\]
\[
\quad \quad \quad \text{swap}(b,j-1,j)
\]
\[
\quad \quad j = j - 1
\]

\[
0 \quad i
\]
\[
2 \quad 4 \quad 4 \quad 6 \quad 6 \quad 7 \quad 5
\]

\[
0 \quad i
\]
\[
2 \quad 4 \quad 4 \quad 6 \quad 6 \quad 5 \quad 7
\]

\[
0 \quad i
\]
\[
2 \quad 4 \quad 4 \quad 6 \quad 5 \quad 6 \quad 7
\]

\text{swap shown in the lecture about lists}
Insertion Sort: Moving into Position

i = 0

while i < n:
 push_down(b,i)
 i = i+1

def push_down(b, i):
 j = i
 while j > 0:
 if b[j-1] > b[j]:
 swap(b,j-1,j)
 j = j-1

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

swap shown in the lecture about lists
The Importance of Helper Functions

```python
i = 0
while i < n:
    push_down(b, i)
    i = i + 1

def push_down(b, i):
    j = i
    while j > 0:
        if b[j - 1] > b[j]:
            swap(b, j - 1, j)
        j = j - 1
```

Can you understand all this code below?

```python
i = 0
while i < n:
    j = i
    while j > 0:
        if b[j - 1] > b[j]:
            temp = b[j]
            b[j] = b[j - 1]
            b[j - 1] = temp
        j = j - 1
    i = i + 1
```

VS

11/16/23

Searching & Sorting
Measuring Performance

• Performance is a tricky thing to measure
 ▪ Different computers run at different speeds
 ▪ Memory also has a major effect as well

• Need an independent way to measure
 ▪ Measure in terms of “basic steps”
 ▫ Example: Searching counted # of checks

• For sorting, we measure in terms of **swaps**
 ▪ Three assignment statements
 ▪ Present in all sorting algorithms
Insertion Sort: Performance

```python
def push_down(b, i):
    """Push value at position i into
    sorted position in b[0..i-1]"
    j = i
    while j > 0:
        if b[j-1] > b[j]:
            swap(b, j-1, j)
        j = j-1
```

- `b[0..i-1]`: `i` elements
- **Worst case:**
 - `i = 0`: 0 swaps
 - `i = 1`: 1 swap
 - `i = 2`: 2 swaps
- **Pushdown is in a loop**
 - Called for `i` in `0..n`
 - `i` swaps each time

Total Swaps:

\[
0 + 1 + 2 + 3 + \ldots (n-1) = \frac{(n-1)n}{2} = \frac{n^2 - n}{2}
\]
Insertion Sort: Performance

```python
def push_down(b, i):
    """Push value at position i into sorted position in b[0..i-1]""
    j = i
    while j > 0:
        if b[j-1] > b[j]:
            swap(b, j-1, j)
        j = j-1
```

- **b[0..i-1]:** i elements
- **Worst case:**
 - $i = 0$: 0 swaps
 - $i = 1$: 1 swap
 - $i = 2$: 2 swaps
- **Pushdown is in a loop**
 - Called for i in $0..n$
 - i swaps each time

Insertion sort is an n^2 algorithm

Total Swaps: $0 + 1 + 2 + 3 + \ldots (n-1) = (n-1)\times n/2 = (n^2-n)/2$
Algorithm “Complexity”

- **Given**: a list of length n and a problem to solve
- **Complexity**: rough number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

<table>
<thead>
<tr>
<th>Complexity</th>
<th>n=10</th>
<th>n=100</th>
<th>n=1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>log n</td>
<td>0.003 s</td>
<td>0.006 s</td>
<td>0.01 s</td>
</tr>
<tr>
<td>n</td>
<td>0.01 s</td>
<td>0.1 s</td>
<td>1 s</td>
</tr>
<tr>
<td>n log n</td>
<td>0.016 s</td>
<td>0.32 s</td>
<td>4.79 s</td>
</tr>
<tr>
<td>n^2</td>
<td>0.1 s</td>
<td>10 s</td>
<td>16.7 m</td>
</tr>
<tr>
<td>n^3</td>
<td>1 s</td>
<td>16.7 m</td>
<td>11.6 d</td>
</tr>
<tr>
<td>2^n</td>
<td>1 s</td>
<td>4x10^{19} y</td>
<td>3x10^{290} y</td>
</tr>
</tbody>
</table>
Algorithm “Complexity”

- **Given**: a list of length n and a problem to solve
- **Complexity**: *rough* number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

<table>
<thead>
<tr>
<th>Complexity</th>
<th>$n=10$</th>
<th>$n=100$</th>
<th>$n=1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log n$</td>
<td></td>
<td>0.006 s</td>
<td>0.01 s</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>0.1 s</td>
<td>1 s</td>
</tr>
<tr>
<td>$n \log n$</td>
<td>0.016 s</td>
<td>0.32 s</td>
<td>4.79 s</td>
</tr>
<tr>
<td>n^2</td>
<td></td>
<td>10 s</td>
<td>16.7 m</td>
</tr>
<tr>
<td>n^3</td>
<td>1 s</td>
<td>16.7 m</td>
<td>11.6 d</td>
</tr>
<tr>
<td>2^n</td>
<td>1 s</td>
<td>4×10^{19} y</td>
<td>3×10^{290} y</td>
</tr>
</tbody>
</table>
Algorithm “Complexity”

- **Given**: a list of length n and a problem to solve
- **Complexity**: *rough* number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

<table>
<thead>
<tr>
<th>Complexity</th>
<th>n=10</th>
<th>n=100</th>
<th>n=1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>log n</td>
<td>0.003 s</td>
<td>0.006 s</td>
<td>0.01 s</td>
</tr>
<tr>
<td>n</td>
<td>1 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n log n</td>
<td>4.79 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n^2</td>
<td>16.7 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n^3</td>
<td>1 s</td>
<td>16.7 m</td>
<td>11.6 d</td>
</tr>
<tr>
<td>2^n</td>
<td>1 s</td>
<td>4x10^{19} y</td>
<td>3x10^{290} y</td>
</tr>
</tbody>
</table>

Major Topic in 2110:
Beyond scope of this course

11/16/23

Searching & Sorting
Insertion Sort is Not Great

- Typically n^2 is okay, but not great
 - Will perform horribly on large data
 - Very bad when performance critical (games)
- We would like to do better than this
 - Can we get n swaps (no)?
 - How about $n \log n$ (maybe)
- This will require a new algorithm
 - Let’s return to horizontal notation
A New Algorithm

Start: b

Goal: b

In-Progress: b

First segment always contains smaller values
Selection Sort

\[i = 0 \]

while \(i < n \):

Find minimum in \(b[i..] \)

Move it to position \(i \)

\[i = i + 1 \]

Remember the restrictions!
Selection Sort

How fast is this?

\[
i = 0
\]

while \(i < n \):

\[
j = \text{index of min of } b[i..n-1]
\]

\[
\text{swap}(b, i, j)
\]

\[
i = i + 1
\]
Selection Sort

This is also \(n^2 \)!

\[
i = 0
\]

while \(i < n \):

\[
j = \text{index of min of } b[i..n-1]
\]

\[
\text{swap}(b, i, j)
\]

\[
i = i + 1
\]
What is the Problem?

• Both insertion, selection sort are nested loops
 - **Outer loop** over each element to sort
 - **Inner loop** to put next element in place
 - Each loop is \(n \) steps. \(n \times n = n^2 \)

• To do better we must *eliminate* a loop
 - But how do we do that?
 - What is like a loop? **Recursion!**
 - Will see how to do this next lecture