Lecture 25

Searching & Sorting

Announcements for This Lecture

Prelim 2

• Prelim, Tuesday at 7:30

- See webpage for rooms
- Make-ups are all emailed!
- Contact Amy if no email

Material up to Nov. 9

- Recursion + Loops + Classes
- Review Sun Nov. 19 at 6pm
- Graded after Break
 - Need time for make-ups

Assignments

- A6 still not graded
 - Will be done by next week
 - Staff still working on it
- A7 is due Monday Dec. 4
 - Extensions are possible
 - Work on it during lab

Linear Search

```
def linear_search(v,b):
```

```
"""Returns: first occurrence of v in b (-1 if not found)
Precond: b a list of number, v a number
```

```
# Loop variable
i = 0
```

```
while i < len(b) and b[i] != v:
```

```
i = i + 1
```

```
if i == len(b): # not found
    return -1
return i
```

How many entries do we have to look at?

Linear Search

```
def linear_search(v,b):
```

```
"""Returns: first occurrence of v in b (-1 if not found)
Precond: b a list of number, v a number
11111
# Loop variable
                                         How many entries do
i = 0
                                           we have to look at?
while i < len(b) and b[i] != v:
  i = i + 1
                                              All of them!
if i == len(b): # not found
  return -1
return i
```

Linear Search

```
def linear_search(v,b):
```

```
"""Returns: last occurrence of v in b (-1 if not found)
Precond: b a list of number, v a number
```

```
# Loop variable
```

```
i = len(b)-1
```

```
while i \ge 0 and b[i] != v:
```

```
i = i - 1
```

```
# Equals -1 if not found
return i
```

How many entries do we have to look at?

```
All of them!
```


- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right
- **Goal:** Keep # guesses low
 - Use my answers to help

- Start guess in the middle
- Answer eliminates half
- Go to middle of remaining

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right
- **Goal:** Keep # guesses low
 - Use my answers to help

- Start guess in the middle
- Answer eliminates half
- Go to middle of remaining

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right
- **Goal:** Keep # guesses low
 - Use my answers to help

- Start guess in the middle
- Answer eliminates half
- Go to middle of remaining

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right
- **Goal:** Keep # guesses low
 - Use my answers to help

- Start guess in the middle
- Answer eliminates half
- Go to middle of remaining

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right
- **Goal:** Keep # guesses low
 - Use my answers to help

- Start guess in the middle
- Answer eliminates half
- Go to middle of remaining

Binary Search

```
def binary_search(v,b):
  # Loop variable(s)
  i = 0, j = len(b)
  while i < j and b[i] != v:
     mid = (i+j)/2
     if b[mid] < v:
        i = mid+1
     elif b[mid] > v:
        j = mid
     else:
        return mid
  return -1 # not found
```

Requires that the data is sorted!

But few checks!

Observation About Sorting

- Sorting data can speed up searching
 - Sorting takes time, but do it once
 - Afterwards, can search many times
- Not just searching. Also speeds up
 - Duplicate elimination in data sets
 - Data compression
 - Physics computations in computer games
- Why it is a major area of computer science

The Sorting Challenge

- Given: A list of numbers
- Goal: Sort those numbers using only
 - Iteration (while-loops or for-loops)
 - Comparisons (< or >)
 - Assignment statements
- Why? For proper **analysis**.
 - Methods/functions come with hidden costs
 - Everything above has no hidden costs
 - Each comparison or assignment is "1 step"

This Requires Some Notation

- As the list is sorted...
 - Part of the list will be sorted
 - Part of the list will not be sorted
- Need a way to refer to portions of the list
 - Notation to refer to sorted/unsorted parts
- And have to do it **without** slicing!
 - Slicing makes a copy
 - Want to sort original list, not a copy

This Requires Some Notation

- As the list is sorted...
 - Part of the list will be sorted
- Part of the list will not be conted
 Need a w
 Notatio
- And have to do it **without** slicing!
 - Slicing makes a copy
 - Want to sort original list, not a copy

Range Notation

- m..n is a range containing n+1-m values
 - 2..5 contains 2, 3, 4, 5.
 - 2..4 contains 2, 3, 4.
 - 2...3 contains 2, 3.
 - 2..2 contains 2.
 - 2..1 contains ???

- Contains 5+1-2 = 4 values
- Contains 4+1-2=3 values
- Contains 3+1-2=2 values
- Contains 2+1-2 = 1 values

- The notation m..n, always implies that $m \le n+1$
 - So you can assume that even if we do not say it
 - If m = n+1, the range has 0 values

Range Notation

- m..n is a range containing n+1-m values
 - 2..5 contains 2, 3, 4, 5.
 - 2..4 contains 2, 3, 4.
 - 2...3 contains 2, 3.
 - 2..2 contains 2.
 - 2..1 contains ???

- The notation m..n, always implies that $m \le n+1$
 - So you can assume that even if we do not say it
 - If m = n+1, the range has 0 values

Horizontal Notation

- Want a pictoral way to visualize this sorting
 - Represent the list as long rectangle
 - We saw this idea in divide-and-conquer

- Do **not** show individual boxes
 - Just dividing lines between regions
 - Label dividing lines with indices
 - But index is either left or right of dividing line

h h+1

(h+1) - h = 1

Horizontal Notation

- Label regions with properties
 - Example: Sorted or ???

- b[0..k-1] is sorted
- b[k..n-1] unknown (might be sorted)
- Picture allows us to track progress

Visualizing Sorting

Insertion Sort


```
i = 0
while i < n:
  push_down(b,i)
  i = i + 1
def push_down(b, i):
   j = i
  while j > 0:
                           swap shown in the
     if b[j-1] > b[j]:
                           lecture about lists
        swap(b,j-1,j)
     j = j-1
```

```
i = 0
while i < n:
   push_down(b,i)
   i = i + 1
def push_down(b, i):
   \mathbf{j} = \mathbf{i}
   while j > 0:
      if b[j-1] > b[j]:
         swap(b,j-1,j)
      j = j-1
```

swap shown in the

lecture about lists

```
i = 0
                                                      0
while i < n:
                                                      2 4 4 6 6 7
                                                                       5
  push_down(b,i)
   i = i + 1
                                                      ()
                                                      2 4 4 6 6 5
                                                                       7
def push_down(b, i):
   \mathbf{j} = \mathbf{i}
                                                      ()
   while j > 0:
                                                      2 4 4 6 5 6
                                                                       7
                            swap shown in the
     if b[j-1] > b[j]:
                            lecture about lists
         swap(b,j-1,j)
      j = j-1
```

```
i = 0
                                                      0
while i < n:
                                                     2 4 4 6 6 7
                                                                      5
  push_down(b,i)
  i = i + 1
                                                      ()
                                                     2 4 4 6 6 5
                                                                      7
def push_down(b, i):
   \mathbf{j} = \mathbf{i}
                                                     ()
  while j > 0:
                                                     2 4 4 6 5 6
                                                                      7
                            swap shown in the
     if b[j-1] > b[j]:
                            lecture about lists
                                                      ()
         swap(b,j-1,j)
                                                     2 4 4 5 6 6
                                                                      7
      j = j-1
```

The Importance of Helper Functions

```
i = 0
while i < n:
  push_down(b,i)
  i = i + 1
                                     VS
def push_down(b, i):
   j = i
   while j > 0:
     if b[j-1] > b[j]:
        swap(b,j-1,j)
     j = j-1
```

Can you understand i = 0 all this code below? while i < n: j = i **while** j > 0: **if** b[j-1] > b[j]: temp = b[j]b[j] = b[j-1]b[j-1] = tempj = j -1 i = i + 1

Measuring Performance

- Performance is a tricky thing to measure
 - Different computers run at different speeds
 - Memory also has a major effect as well
- Need an independent way to measure
 - Measure in terms of "basic steps"
 - **Example:** Searching counted # of checks
- For sorting, we measure in terms of **swaps**
 - Three assignment statements
 - Present in all sorting algorithms

Insertion Sort: Performance

def push_down(b, i):

```
"""Push value at position i into
sorted position in b[0..i-1]"""
```

```
j = i
```

```
while j > 0:
```

```
if b[j-1] > b[j]:
```

```
swap(b,j-1,j)
```

j = j-1

- b[0..i-1]: i elements
- Worst case:
 - i = 0: 0 swaps
 - i = 1: 1 swap
 - i = 2: 2 swaps
- Pushdown is in a loop
 - Called for i in 0..n
 - i swaps each time

```
Total Swaps: 0 + 1 + 2 + 3 + ... (n-1) = (n-1)*n/2 = (n^2-n)/2
```

Insertion Sort: Performance

def push_down(b, i):

```
"""Push value at position i into
sorted position in b[0..i-1]"""
```

```
j = i
```

```
while j > 0:
```

```
if b[j-1] > b[j]:
```

```
swap(b,j-1,j)
```

Insertion sort is an n² algorithm

- b[0..i-1]: i elements
- Worst case:
 - i = 0: 0 swaps
 - i = 1: 1 swap
 - i = 2: 2 swaps
- Pushdown is in a loop
 - Called for i in 0..n
 - i swaps each time

Total Swaps: $0 + 1 + 2 + 3 + ... (n-1) = (n-1)*n/2 = (n^2-n)/2$

Algorithm "Complexity"

- **Given**: a list of length n and a problem to solve
- **Complexity**: *rough* number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

Complexity	n=10	n=100	n=1000
log n	0.003 s	0.006 s	0.01 s
n	0.01 s	0.1 s	1 s
n log n	0.016 s	0.32 s	4.79 s
n^2	0.1 s	10 s	16.7 m
n ³	1 s	16.7 m	11.6 d
2 ⁿ	1 s	4x10 ¹⁹ y	3x10 ²⁹⁰ y

Algorithm "Complexity"

- **Given**: a list of length n and a problem to solve
- **Complexity**: *rough* number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

Complexity		n=100	n=1000
log n 🦯	Binary Search	0.006 s	0.01 s
n	Linear Search	0.1 s	1 s
n log n	0.016 s	0.32 s	4.79 s
n^2	Insertion Sort	10 s	16.7 m
n ³	1 S	16.7 m	11.6 d
2 ⁿ	1 s	4x10 ¹⁹ y	3x10 ²⁹⁰ y

Algorithm "Complexity"

- **Given**: a list of length n and a problem to solve
- **Complexity**: *rough* number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

Complexity	n=10	n=100	n=1000
log n			0.01 s
n	Major Top	1 s	
n log n	Beyond scope	e 4.79 s	
n^2		16.7 m	
n ³	1 s	16.7 m	11.6 d
2 ⁿ	1 s	4x10 ¹⁹ y	3x10 ²⁹⁰ y

Insertion Sort is Not Great

- Typically n² is okay, but not great
 - Will perform horribly on large data
 - Very bad when performance critical (games)
- We would like to do better than this
 - Can we get n swaps (no)?
 - How about n log n (maybe)
- This will require a new algorithm
 - Let's return to horizontal notation

A New Algorthm

Selection Sort

Selection Sort

Selection Sort

What is the Problem?

- Both insertion, selection sort are **nested loops**
 - Outer loop over each element to sort
 - Inner loop to put next element in place
 - Each loop is n steps. $n \times n = n^2$
- To do better we must *eliminate* a loop
 - But how do we do that?
 - What is like a loop? **Recursion!**
 - Will see how to do this next lecture