## Lecture 25

## Searching \& Sorting

## Announcements for This Lecture

## Prelim 2

- Prelim, Tuesday at 7:30
- See webpage for rooms
- Make-ups are all emailed!
- Contact Amy if no email
- Material up to Nov. 9
- Recursion + Loops + Classes
- Review Sun Nov. 19 at 6pm
- Graded after Break
- Need time for make-ups


## Assignments

- A6 still not graded
- Will be done by next week
- Staff still working on it
- A7 is due Monday Dec. 4
- Extensions are possible
- Work on it during lab



## Linear Search

def linear_search(v,b):
"""Returns: first occurrence of v in b (-1 if not found)
Precond: $b$ a list of number, $v$ a number
"III
\# Loop variable
$\mathrm{i}=0$
while $\mathrm{i}<\operatorname{len}(\mathrm{b})$ and $\mathrm{b}[\mathrm{i}]$ != v : $\mathrm{i}=\mathrm{i}+\mathrm{l}$
if $\mathrm{i}==\operatorname{len}(\mathrm{b}):$ \# not found
return -1
return i

## Linear Search

def linear_search(v,b):
"""Returns: first occurrence of v in $\mathrm{b}(-1$ if not found)
Precond: $b$ a list of number, $v$ a number
| I I |I
\# Loop variable
$\mathrm{i}=0$
while $\mathrm{i}<\operatorname{len}(\mathrm{b})$ and $\mathrm{b}[\mathrm{i}]$ != v : $\mathrm{i}=\mathrm{i}+\mathrm{l}$
if $\mathrm{i}==\operatorname{len}(\mathrm{b})$ : \# not found return -1
return i

How many entries do we have to look at?

## All of them!

## Linear Search

def linear_search(v,b):
"""Returns: last occurrence of $v$ in $b(-1$ if not found)
Precond: $b$ a list of number, $v$ a number

IIIII
\# Loop variable
$\mathrm{i}=\operatorname{len}(\mathrm{b})-\mathrm{l}$
while i >= 0 and $\mathrm{b}[\mathrm{i}]$ != v :
$\mathrm{i}=\mathrm{i}-\mathrm{l}$
\# Equals -1 if not found return i

How many entries do we have to look at?

## All of them!

## Is There a Better Way?

- Thinking of number $0 . .100$
- You get to guess number
- I tell you higher or lower
- Continue until get it right

- Goal: Keep \# guesses low
- Use my answers to help
- Strategy?
- Start guess in the middle
- Answer eliminates half
- Go to middle of remaining


## Is There a Better Way?

- Thinking of number $0 . .100$
- You get to guess number
- I tell you higher or lower
- Continue until get it right



## Higher!

- Goal: Keep \# guesses low
- Use my answers to help
- Strategy?
- Start guess in the middle
- Answer eliminates half
- Go to middle of remaining


## Is There a Better Way?

- Thinking of number $0 . .100$
- You get to guess number
- I tell you higher or lower
- Continue until get it right


Lower!

- Goal: Keep \# guesses low
- Use my answers to help
- Strategy?
- Start guess in the middle
- Answer eliminates half
- Go to middle of remaining


## Is There a Better Way?

- Thinking of number $0 . .100$
- You get to guess number
- I tell you higher or lower
- Continue until get it right


Higher!

- Strategy?
- Start guess in the middle
- Answer eliminates half
- Go to middle of remaining


## Is There a Better Way?

- Thinking of number $0 . .100$
- You get to guess number
- I tell you higher or lower
- Continue until get it right


Correct!

- Goal: Keep \# guesses low
- Use my answers to help
- Strategy?
- Start guess in the middle
- Answer eliminates half
- Go to middle of remaining


## Binary Search

def binary_search(v,b):
\# Loop variable
$i=0, j=\operatorname{len}(b)$
while $\mathrm{i}<\mathrm{j}$ and $\mathrm{b}[\mathrm{i}]$ != v :
mid $=(\mathrm{i}+\mathrm{j}) / / 2$
if $\mathrm{b}[$ mid $]<\mathrm{v}$ :
$\mathrm{i}=\mathrm{mid}+1$
elif $\mathrm{b}[\mathrm{mid}]>\mathrm{v}$ :
$j=$ mid
else:
return mid
return -1 \# not found

## Observation About Sorting

- Sorting data can speed up searching
- Sorting takes time, but do it once
- Afterwards, can search many times
- Not just searching. Also speeds up
- Duplicate elimination in data sets
- Data compression
- Physics computations in computer games
- Why it is a major area of computer science


## The Sorting Challenge

- Given: A list of numbers
- Goal: Sort those numbers using only
- Iteration (while-loops or for-loops)
- Comparisons (< or >)
- Assignment statements
- Why? For proper analysis.
- Methods/functions come with hidden costs
- Everything above has no hidden costs
- Each comparison or assignment is " 1 step"


## This Requires Some Notation

- As the list is sorted...
- Part of the list will be sorted
- Part of the list will not be sorted
- Need a way to refer to portions of the list
- Notation to refer to sorted/unsorted parts
- And have to do it without slicing!
- Slicing makes a copy
- Want to sort original list, not a copy


## This Requires Some Notation

- As the list is sorted...
- Part of the list will be sorted

- Need a $u$ But we will be less formal
- Notatio than in previous years!
- And have to do it without slicing!
- Slicing makes a copy
- Want to sort original list, not a copy


## Range Notation

- m..n is a range containing $\mathrm{n}+1-\mathrm{m}$ values
- $2 . .5$ contains $2,3,4,5$.
- $2 . .4$ contains 2, 3, 4 .
- $2 . .3$ contains 2,3 .
- $2 . .2$ contains 2.
- $2 . .1$ contains ???

Contains $5+1-2=4$ values
Contains $4+1-2=3$ values
Contains $3+1-2=2$ values
Contains $2+1-2=1$ values

- The notation $m$..n, always implies that $\mathrm{m}<=\mathrm{n}+1$
- So you can assume that even if we do not say it
- If $\mathrm{m}=\mathrm{n}+1$, the range has 0 values


## Range Notation

- m..n is a range containing $\mathrm{n}+1-\mathrm{m}$ values
- $2 . .5$ contains $2,3,4,5$.
- $2 . .4$ contains 2, 3, 4 .
- $2 . .3$ contains 2, 3 .
- $2 . .2$ contains 2.
- $2 . .1$ contains ???
- The notation m..n, always implies that $\mathrm{m}<=\mathrm{n}+1$
- So you can assume that even if we do not say it
- If $m=n+1$, the range has 0 values


## Horizontal Notation

- Want a pictoral way to visualize this sorting
- Represent the list as long rectangle
- We saw this idea in divide-and-conquer

- Do not show individual boxes
- Just dividing lines between regions


$$
(h+1)-h=1
$$

- Label dividing lines with indices
- But index is either left or right of dividing line


## Horizontal Notation

- Label regions with properties
- Example: Sorted or ???

- b[0.k-1] is sorted
- b[k.n-1] unknown (might be sorted)
- Picture allows us to track progress


## Visualizing Sorting



## Insertion Sort

$\mathrm{i}=0$

while i < n :

$$
\begin{aligned}
& \text { \# Push b[i] down into its } \\
& \text { \# sorted position in b[0.i] } \\
& \mathrm{i}=\mathrm{i}+1
\end{aligned}
$$



## Remember the restrictions!

## Insertion Sort: Moving into Position

$\mathrm{i}=0$
while i < n :
push_down(b,i)

i $=$ i+l
def push_down(b, i):

$$
j=i
$$

while $\mathrm{j}>0$ : if $b[j-1]>b[j]:$
$\mid \quad \operatorname{swap}(b, j-1, j)$
$j=j-l$

## Insertion Sort: Moving into Position

$\mathrm{i}=0$
while i < n :
push_down(b,i)
$\mathrm{i}=\mathrm{i}+1$
def push_down(b, i):


$$
j=\mathbf{i}
$$

while $\mathrm{j}>0$ : if $b[j-1]>b[j]:$
$\mid \quad \operatorname{swap}(b, j-1, j)$
$j=j-l$

## Insertion Sort: Moving into Position

$\mathrm{i}=0$
while i < n :
push_down(b,i)
$\mathrm{i}=\mathrm{i}+1$
def push_down(b, i):


$$
j=\mathfrak{l}
$$

while $\mathrm{j}>0$ : if $b[j-1]>b[j]:$
swap shown in the

| 0 |  |
| :--- | :--- | swap(b,j-1,j)

$j=j-1$

## Insertion Sort: Moving into Position

$\mathrm{i}=0$
while i < n :
push_down(b,i)
$\mathrm{i}=\mathrm{i}+1$
def push_down(b, i):

$j=j$
while $\mathrm{j}>0$ :
if $b[j-1]>b[j]:$
swap(b,j-1,j)
$j=j-1$
swap shown in the lecture about lists


| 0 | 1 |
| :--- | :--- |
| 2445667 |  |

## The Importance of Helper Functions

$$
i=0
$$

while i < n : push_down(b,i)
i $=\mathrm{i}+1$
def push_down(b, i):
$j=i$
while $\mathrm{j}>0$ :
if $b[j-1]>b[j]:$
swap(b,j-1,j)
$j=j-1$

Can you understand
$\mathrm{i}=0 \quad$ all this code below?
while i < n :

$$
\mathrm{j}=\mathrm{i}
$$

while j > 0:

$$
\text { if } b[j-1]>b[j]:
$$

$$
\text { temp }=b[j]
$$

$$
b[j]=b[j-1]
$$

$$
b[j-1]=\text { temp }
$$

$$
j=j-l
$$

$$
i=i+1
$$

## Measuring Performance

- Performance is a tricky thing to measure
- Different computers run at different speeds
- Memory also has a major effect as well
- Need an independent way to measure
- Measure in terms of "basic steps"
- Example: Searching counted \# of checks
- For sorting, we measure in terms of swaps
- Three assignment statements
- Present in all sorting algorithms


## Insertion Sort: Performance

def push_down(b, i):
"""Push value at position i into
sorted position in b[0..i-1]"""
$j=i$
while $\mathrm{j}>0$ :
if $b[j-1]>b[j]:$ $\operatorname{swap}(b, j-1, j)$
$j=j-1$

- b[0..i-1]: i elements
- Worst case:
- $\mathrm{i}=0$ : 0 swaps
- $\mathrm{i}=1: 1$ swap
- $\mathrm{i}=2: 2$ swaps
- Pushdown is in a loop
- Called for i in $0 . . \mathrm{n}$
- i swaps each time

$$
\text { Total Swaps: } 0+1+2+3+\ldots(n-1)=(n-1) * n / 2=\left(n^{2}-n\right) / 2
$$

## Insertion Sort: Performance

def push_down(b, i):
"""Push value at position i into
sorted position in b[0..i-1]"""
$j=i$
while $\mathrm{j}>0$ :
if $b[j-1]>b[j]:$ $\operatorname{swap}(b, j-1, j)$
$j=j-1$

- b[0..i-1]: i elements
- Worst case:
- $\mathrm{i}=0$ : 0 swaps
- $\mathrm{i}=1: 1$ swap
- $\mathrm{i}=2: 2$ swaps
- Pushdown is in a loop
- Called for i in $0 . . \mathrm{n}$

Insertion sort is
an $n^{2}$ algorithm

- i swaps each time


## Algorithm "Complexity"

- Given: a list of length n and a problem to solve
- Complexity: rough number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

| Complexity | $\mathrm{n}=\mathbf{1 0}$ | $\mathrm{n}=\mathbf{1 0 0}$ | $\mathrm{n}=\mathbf{1 0 0 0}$ |
| :---: | :---: | :---: | :---: |
| $\log \mathrm{n}$ | 0.003 s | 0.006 s | 0.01 s |
| n | 0.01 s | 0.1 s | 1 s |
| $\mathrm{n} \log \mathrm{n}$ | 0.016 s | 0.32 s | 4.79 s |
| $\mathrm{n}^{2}$ | 0.1 s | 10 s | 16.7 m |
| $\mathrm{n}^{3}$ | 1 s | 16.7 m | 11.6 d |
| $2^{\mathrm{n}}$ | 1 s | $4 \times 10^{19} \mathrm{y}$ | $3 \times 10^{290} \mathrm{y}$ |

## Algorithm "Complexity"

- Given: a list of length n and a problem to solve
- Complexity: rough number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

| Complexity | $\mathrm{n}=100$ | $\mathrm{n}=1000$ |
| :---: | :---: | :---: |
| $\log \mathrm{n}<$ Binary Search | 0.006 s | 0.01 s |
| $\mathrm{n}<$ Linear Search | 0.1 s | 1 s |
| $\mathrm{n} \log \mathrm{n} \quad 0.016 \mathrm{~s}$ | 0.32 s | 4.79 s |
| $\mathrm{n}^{2} \int$ Insertion Sort | 10 s | 16.7 m |
| $\mathrm{n}^{3} \quad 1 \mathrm{~s}$ | 16.7 m | 11.6 d |
| $2^{\mathrm{n}} \quad 1 \mathrm{~s}$ | $4 \times 10^{19} \mathrm{y}$ | $3 \times 10^{290} \mathrm{y}$ |

## Algorithm "Complexity"

- Given: a list of length n and a problem to solve
- Complexity: rough number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

| Complexity | $\mathrm{n}=10$ | $\mathrm{n}=100$ | $\mathrm{n}=1000$ |
| :---: | :---: | :---: | :---: |
| $\log \mathrm{n}$ | Major Topic in 2110: <br> Beyond scope of this course |  | 0.01 s |
| n |  |  | 1 s |
| $n \log \mathrm{n}$ |  |  | 4.79 s |
| $\mathrm{n}^{2}$ |  |  | 16.7 m |
| $\mathrm{n}^{3}$ | 1 s | 16.7 m | 11.6 d |
| $2^{\text {n }}$ | 1 s | $4 \times 10^{19} \mathrm{y}$ | $3 \times 10^{290} \mathrm{y}$ |

## Insertion Sort is Not Great

- Typically $n^{2}$ is okay, but not great
- Will perform horribly on large data
- Very bad when performance critical (games)
- We would like to do better than this
- Can we get n swaps (no)?
- How about $\mathrm{n} \log \mathrm{n}$ (maybe)
- This will require a new algorithm
- Let's return to horizontal notation


## A New Algorthm

$\square$


First segment always contains smaller values

## Selection Sort


$\mathrm{i}=0$
while i < n :
\# Find minimum in b[i..]
\# Move it to position i
$\mathrm{i}=\mathrm{i}+1$


## Remember the restrictions!

## Selection Sort

## How fast is this?

$\mathrm{i}=0$
while $\mathrm{i}<\mathrm{n}$ :
$j=$ index of min of $b[i . . n-1]$ swap(b,i,j)
$\mathrm{i}=\mathrm{i}+1$


## Selection Sort

## This is also $\mathrm{n}^{2}$ !

$\mathrm{i}=0$
while i < n :


## What is the Problem?

- Both insertion, selection sort are nested loops
- Outer loop over each element to sort
- Inner loop to put next element in place
- Each loop is n steps. $\mathrm{n} \times \mathrm{n}=\mathrm{n}^{2}$
- To do better we must eliminate a loop
- But how do we do that?
- What is like a loop? Recursion!
- Will see how to do this next lecture

