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Announcements for This Lecture

Prelim 2 Assignments
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• Prelim, Nov 21st at 7:30
§ See webpage for rooms
§ Review Sun Nov. 19 (TBA) 

• Material up to Today
§ Recursion + Loops + Classes
§ Study guide is now posted

• Conflict with Prelim?
§ Prelim 2 Conflict on CMS
§ SDS students must submit!

• A4 is now graded
§ Mean: 89.1  Median: 91
§ Mean: 9.3 hrs  SDev: 5 hrs 

• A5 graded by Sunday
• Keep working on A6

§ MUST be done with Task 3
§ Should be close with Task 4
§ Start Task 5 by tomorrow



class Fraction(object):
    """Instances are normal fractions n/d"""
    # INSTANCE ATTRIBUTES
    # _numerator:    int
    # _denominator: int > 0

class FractionalLength(Fraction):
    """Instances are fractions with units """
    # INSTANCE ATTRIBUTES same but
    # _unit: one of 'in', 'ft', 'yd'
    def __init__(self,n,d,unit):
         """Make length of given units"""
         assert unit in ['in', 'ft', 'yd']
         super().__init__(n,d)
         self._unit = unit

>>> p = Fraction(1,2)
>>> q = FractionalLength(1,2,'ft') 
>>> r = p*q

>>> r = p.__mul__(q) # ERROR

Python 
converts to

__mul__ has precondition
type(q) == Fraction 
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A Problem with Subclasses



The isinstance Function

• isinstance(<obj>,<class>)
§ True if <obj>’s class is same 

as or a subclass of <class> 
§ False otherwise

• Example:
§ isinstance(e,Executive) is True
§ isinstance(e,Employee) is True
§ isinstance(e,object) is True
§ isinstance(e,str) is False

• Generally preferable to type
§ Works with base types too!
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e id4

id4
Executive

_salary 0.0

_start 2012

_name 'Fred'

_bonus 0.0

object

Employee

Executive



isinstance and Subclasses

>>> e = Employee('Bob',2012)
>>> isinstance(e,Executive)
???
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A: True
B: False
C: Error
D: I don’t know

e id5

id5
Employee

_salary 50k

_start 2012

_name 'Bob'

object

Employee

Executive



isinstance and Subclasses

>>> e = Employee('Bob',2011)
>>> isinstance(e,Executive)
???
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A: True
B: False
C: Error
D: I don’t know

object

Executive

Employee

→ means “extends” 
or “is an instance of”

Correct



Fixing Multiplication
class Fraction(object):
    """Instances are fractions n/d"""
    # _numerator:    int
    # _denominator: int > 0
    

    def __mul__(self,q):
        """Returns: Product of self, q
        Makes a new Fraction; does not   
        modify contents of self or q
        Precondition: q a Fraction"""
        assert isinstance(q, Fraction)
        top = self.numerator*q.numerator
        bot = self.denominator*q.denominator
        return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = FractionalLength(1,2,'ft') 
>>> r = p*q

>>> r = p.__mul__(q) # OKAY

Python 
converts to

Can multiply so long as it 
has numerator, denominator
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Error Types in Python

def foo():
   assert 1 == 2, 'My error'
   …

>>> foo()
AssertionError: My error

def foo():
    x = 5 / 0
   …

>>> foo()
ZeroDivisionError: integer 
division or modulo by zero
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Class Names



Error Types in Python

def foo():
   assert 1 == 2, 'My error'
   …

>>> foo()
AssertionError: My error

def foo():
    x = 5 / 0
   …

>>> foo()
ZeroDivisionError: integer 
division or modulo by zero
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Class Names

Information about an error 
is stored inside an object.
The error type is the class
of the error object.



Error Types in Python
• All errors are instances of class BaseException
• This allows us to organize them in a hierarchy
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BaseException

AssertionError

Exception

id4

AssertionError

'My error'

→ means “extends” 
or “is an instance of”

__init__(self,msg)
__str__(self)
…

BaseException

Exception(BE)

AssError(E)



Error Types in Python
• All errors are instances of class BaseException
• This allows us to organize them in a hierarchy
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id4

AssertionError

'My error'

→ means “extends” 
or “is an instance of”

BaseException

AssertionError

Exception

__init__(self,msg)
__str__(self)
…

BaseException

Exception(BE)

AssError(E)

All of these are 
actually empty!

Why?



Python Error Type Hierarchy
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BaseException

ExceptionSystemExit

AssertionError ArithmeticErrorAttributeError ValueErrorTypeErrorIOError …

ZeroDivisionError OverflowError …

Argument has 
wrong type

(e.g. float([1]))

Argument has 
wrong value

(e.g. float('a'))

Why so many error types?http://docs.python.org/
library/exceptions.html



Recall: Recovering from Errors

• try-except blocks allow us to recover from errors
§ Do the code that is in the try-block
§ Once an error occurs, jump to the except

• Example:
try:

val = input()         # get number from user
x = float(val)        # convert string to float
print('The next number is '+str(x+1))

except:
print('Hey! That is not a number!')

might have an error

executes if have an error
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Handling Errors by Type

• try-except blocks can be restricted to specific errors
§ Do except if error is an instance of that type
§ If error not an instance, do not recover

• Example:
try:

val = input()         # get number from user
x = float(val)        # convert string to float
print('The next number is '+str(x+1))

except ValueError:
print('Hey! That is not a number!')

Only recovers ValueError.
Other errors ignored.
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May have ValueError

May have 
KeyboardInterrupt



Handling Errors by Type

• try-except blocks can be restricted to specific errors
§ Doe except if error is an instance of that type
§ If error not an instance, do not recover

• Example:
try:

val = input()         # get number from user
x = float(val)        # convert string to float
print('The next number is '+str(x+1))

except KeyboardInterrupt:
print('Check your keyboard!')

Only recovers 
KeyboardInterrupt.

Other errors ignored.
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May have ValueError

May have 
KeyboardInterrupt



Handling Errors by Type

• try-except can put the error in a variable
• Example:

try:
val = input()         # get number from user
x = float(val)        # convert string to float
print('The next number is '+str(x+1))

except ValueError as e:
print(e.args[0])
print('Hey! That is not a number!')
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Some Error subclasses 
have more attributes



Creating Errors in Python

def foo(x):
   assert x < 2, 'My error'
   …

def foo(x):
   if x >= 2:
       m = 'My error'
       err = AssertionError(m)
       raise err

11/9/23 Advanced Error Handling 17

• Create errors with raise
§ Usage: raise <exp>
§ exp evaluates to an object
§ An instance of Exception

• Tailor your error types
§ ValueError: Bad value
§ TypeError: Bad type

• Still prefer asserts for 
preconditions, however
§ Compact and easy to read

Identical



Creating Errors in Python

def foo(x):
   assert x < 2, 'My error'
   …

def foo(x):
   if x >= 2:
       m = 'My error'
       err = ValueError(m)
       raise err

11/9/23 Advanced Error Handling 18

• Create errors with raise
§ Usage: raise <exp>
§ exp evaluates to an object
§ An instance of Exception

• Tailor your error types
§ ValueError: Bad value
§ TypeError: Bad type

• Still prefer asserts for 
preconditions, however
§ Compact and easy to read

Identical



Raising and Try-Except

def foo():
    x = 0
    try:
       raise Exception()
       x  = 2
    except Exception:
       x = 3
    return x

• The value of foo()? 
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A: 0
B: 2
C: 3
D: No value.  It stops!
E: I don’t know



Raising and Try-Except

def foo():
    x = 0
    try:
       raise Exception()
       x  = 2
    except Exception:
       x = 3
    return x

• The value of foo()? 
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A: 0
B: 2
C: 3
D: No value.  It stops!
E: I don’t know

Correct



Raising and Try-Except

def foo():
    x = 0
    try:
       raise Exception()
       x  = 2
    except BaseException:
       x = 3
    return x

• The value of foo()? 
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A: 0
B: 2
C: 3
D: No value.  It stops!
E: I don’t know



Raising and Try-Except

def foo():
    x = 0
    try:
       raise Exception()
       x  = 2
    except BaseException:
       x = 3
    return x

• The value of foo()? 

11/9/23 Advanced Error Handling 22

A: 0
B: 2
C: 3
D: No value.  It stops!
E: I don’t know

Correct



Raising and Try-Except

def foo():
    x = 0
    try:
       raise Exception()
       x  = 2
    except AssertionError:
       x = 3
    return x

• The value of foo()? 
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A: 0
B: 2
C: 3
D: No value.  It stops!
E: I don’t know



Raising and Try-Except

def foo():
    x = 0
    try:
       raise Exception()
       x  = 2
    except AssertionError:
       x = 3
    return x

• The value of foo()? 
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A: 0
B: 2
C: 3
D: No value.  It stops!
E: I don’t know

Correct

Python uses isinstance
to match Error types



Creating Your Own Exceptions

class CustomError(Exception):
    """An instance is a custom exception"""
 pass

This is all you need!
§ No extra attributes
§ No extra methods
§ No constructors
Inherit everything
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Only issues is choice 
of parent error class.
Use Exception if you 

are unsure what.



Case Study: Files

• Can read the contents of any file with open()
§ Returns a file object with method read()
§ Method read() returns contents as a string
§ Remember to close() file when done

• There are SO many errors that can happen
§ FileNotFoundError: File does not exit
§ PermissionError: You are not allowed to read it
§ Other errors possible when processing data
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Recall: JSON Files
{
    "wind" : {
        "speed" : 13.0,
        "crosswind" : 5.0
        },
    "sky" : [
        {
            "cover" : "clouds",
            "type" : "broken",
            "height" : 1200.0
        },
        {
            "type" : "overcast",
            "height" : 1800.0
        }
    ]
}
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• Look like a nested dict
§ But read in as a string
§ You have to convert it

• Python module json
§ Function loads()

Converts str -> dict
§ Function dumps()

Convert dict -> str

• Conversion is sensitive
§ Stray commas crash it



Reading a JSON File

def read_json(fname):
    try:
        file = open(fname)
        data = file.read()
        file.close()
        result = json.loads(data)
        return result
    except FileNotFoundError:
        print(fname +' not found')
    except JsonDecodeError:
        print(fname +' is invalid')
    return None
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Close file 
when done

Could not
find file

JSON contents
are not valid

Open file 
with name

If failed

Note that we can 
chain excepts like
an if-elif statement



Reading a File in General

def read_foo(fname):
    try:
        file = open(fname)
        data = file.read()
        file.close()
        result = convert(data)
        return result
    except FileNotFoundError:
        print(fname +' not found')
    except MyConversionError:
        print(fname +' is invalid')
    return None
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Error specific
to the file format

Custom helper
for this file type

All the work is
in conversion step



Aside: Pathnames

• Files obey the same rule as other modules
§ To read a file, it must be in the same folder
§ Otherwise, you must use a pathname for file

• Relative path: directions from current folder
§ macOS: '../../lec22/file.txt'
§ Windows: '..\..\lec22\file.txt'

• Absolute path: directions that work anywhere
§ macOS: '/Users/white/cs1110/lect22/file.txt'
§ Windows: 'C:\Users\white\cs1110\lect22\file.txt'
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Like navigating
command shell



Aside: Pathnames

• Files obey the same rule as other modules
§ To read a file, it must be in the same folder
§ Otherwise, you must use a pathname for file

• Relative path: directions from current folder
§ macOS: '../../lec22/file.txt'
§ Windows: '..\..\lec22\file.txt'

• Absolute path: directions that work anywhere
§ macOS: '/Users/white/cs1110/lect22/file.txt'
§ Windows: 'C:\Users\white\cs1110\lect22\file.txt'
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Like navigating
command shell

Note the change
in slash direction



Pathnames are OS Specific

• This makes reading files harder
§ May work on Windows but crash on macOS!
§ Yet another error message we need to handle

• Solution: Use the module os.path
§ Builds a pathname string for current os

• Example: os.path('..', 'cs1110', 'lec22', 'file.txt')
§ macOS: '../cs1110/lec22/file.txt'
§ Windows: '..\cs1110\lec22\file.txt’

• Absolute paths are a little trickier, but similar
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Final Word on Error Handling

• Versions of try-except exist in most languages
§ Java, C++, C#, Objective-C all have it

• But those languages try to minimize its use
§ Give application a way to crash “nicely”
§ Because processing a try-except it quite slow

• Python has a very different philosophy
§ Python is sort-of slow; exceptions are not slower
§ It is okay to use try-except all the time
§ Encourages its use as much as if-statements
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Developers refer to coding
styles unique to python

as pythonic programming


