
Advanced
Error Handling

Lecture 23

Announcements for This Lecture

Prelim 2 Assignments

11/9/23 2Advanced Error Handling

• Prelim, Nov 21st at 7:30
§ See webpage for rooms
§ Review Sun Nov. 19 (TBA)

• Material up to Today
§ Recursion + Loops + Classes
§ Study guide is now posted

• Conflict with Prelim?
§ Prelim 2 Conflict on CMS
§ SDS students must submit!

• A4 is now graded
§ Mean: 89.1 Median: 91
§ Mean: 9.3 hrs SDev: 5 hrs

• A5 graded by Sunday
• Keep working on A6

§ MUST be done with Task 3
§ Should be close with Task 4
§ Start Task 5 by tomorrow

class Fraction(object):
 """Instances are normal fractions n/d"""
 # INSTANCE ATTRIBUTES
 # _numerator: int
 # _denominator: int > 0

class FractionalLength(Fraction):
 """Instances are fractions with units """
 # INSTANCE ATTRIBUTES same but
 # _unit: one of 'in', 'ft', 'yd'
 def __init__(self,n,d,unit):
 """Make length of given units"""
 assert unit in ['in', 'ft', 'yd']
 super().__init__(n,d)
 self._unit = unit

>>> p = Fraction(1,2)
>>> q = FractionalLength(1,2,'ft')
>>> r = p*q

>>> r = p.__mul__(q) # ERROR

Python
converts to

__mul__ has precondition
type(q) == Fraction

11/9/23 Advanced Error Handling 3

A Problem with Subclasses

The isinstance Function

• isinstance(<obj>,<class>)
§ True if <obj>’s class is same

as or a subclass of <class>
§ False otherwise

• Example:
§ isinstance(e,Executive) is True
§ isinstance(e,Employee) is True
§ isinstance(e,object) is True
§ isinstance(e,str) is False

• Generally preferable to type
§ Works with base types too!

11/9/23 Advanced Error Handling 4

e id4

id4
Executive

_salary 0.0

_start 2012

_name 'Fred'

_bonus 0.0

object

Employee

Executive

isinstance and Subclasses

>>> e = Employee('Bob',2012)
>>> isinstance(e,Executive)
???

11/9/23 Advanced Error Handling 5

A: True
B: False
C: Error
D: I don’t know

e id5

id5
Employee

_salary 50k

_start 2012

_name 'Bob'

object

Employee

Executive

isinstance and Subclasses

>>> e = Employee('Bob',2011)
>>> isinstance(e,Executive)
???

11/9/23 Advanced Error Handling 6

A: True
B: False
C: Error
D: I don’t know

object

Executive

Employee

→ means “extends”
or “is an instance of”

Correct

Fixing Multiplication
class Fraction(object):
 """Instances are fractions n/d"""
 # _numerator: int
 # _denominator: int > 0

 def __mul__(self,q):
 """Returns: Product of self, q
 Makes a new Fraction; does not
 modify contents of self or q
 Precondition: q a Fraction"""
 assert isinstance(q, Fraction)
 top = self.numerator*q.numerator
 bot = self.denominator*q.denominator
 return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = FractionalLength(1,2,'ft')
>>> r = p*q

>>> r = p.__mul__(q) # OKAY

Python
converts to

Can multiply so long as it
has numerator, denominator

11/9/23 Advanced Error Handling 7

Error Types in Python

def foo():
 assert 1 == 2, 'My error'
 …

>>> foo()
AssertionError: My error

def foo():
 x = 5 / 0
 …

>>> foo()
ZeroDivisionError: integer
division or modulo by zero

11/9/23 Advanced Error Handling 8

Class Names

Error Types in Python

def foo():
 assert 1 == 2, 'My error'
 …

>>> foo()
AssertionError: My error

def foo():
 x = 5 / 0
 …

>>> foo()
ZeroDivisionError: integer
division or modulo by zero

11/9/23 Advanced Error Handling 9

Class Names

Information about an error
is stored inside an object.
The error type is the class
of the error object.

Error Types in Python
• All errors are instances of class BaseException
• This allows us to organize them in a hierarchy

11/9/23 Advanced Error Handling 10

BaseException

AssertionError

Exception

id4

AssertionError

'My error'

→ means “extends”
or “is an instance of”

__init__(self,msg)
__str__(self)
…

BaseException

Exception(BE)

AssError(E)

Error Types in Python
• All errors are instances of class BaseException
• This allows us to organize them in a hierarchy

11/9/23 Advanced Error Handling 11

id4

AssertionError

'My error'

→ means “extends”
or “is an instance of”

BaseException

AssertionError

Exception

__init__(self,msg)
__str__(self)
…

BaseException

Exception(BE)

AssError(E)

All of these are
actually empty!

Why?

Python Error Type Hierarchy

11/9/23 Advanced Error Handling 12

BaseException

ExceptionSystemExit

AssertionError ArithmeticErrorAttributeError ValueErrorTypeErrorIOError …

ZeroDivisionError OverflowError …

Argument has
wrong type

(e.g. float([1]))

Argument has
wrong value

(e.g. float('a'))

Why so many error types?http://docs.python.org/
library/exceptions.html

Recall: Recovering from Errors

• try-except blocks allow us to recover from errors
§ Do the code that is in the try-block
§ Once an error occurs, jump to the except

• Example:
try:

val = input() # get number from user
x = float(val) # convert string to float
print('The next number is '+str(x+1))

except:
print('Hey! That is not a number!')

might have an error

executes if have an error

11/9/23 13Advanced Error Handling

Handling Errors by Type

• try-except blocks can be restricted to specific errors
§ Do except if error is an instance of that type
§ If error not an instance, do not recover

• Example:
try:

val = input() # get number from user
x = float(val) # convert string to float
print('The next number is '+str(x+1))

except ValueError:
print('Hey! That is not a number!')

Only recovers ValueError.
Other errors ignored.

11/9/23 14Advanced Error Handling

May have ValueError

May have
KeyboardInterrupt

Handling Errors by Type

• try-except blocks can be restricted to specific errors
§ Doe except if error is an instance of that type
§ If error not an instance, do not recover

• Example:
try:

val = input() # get number from user
x = float(val) # convert string to float
print('The next number is '+str(x+1))

except KeyboardInterrupt:
print('Check your keyboard!')

Only recovers
KeyboardInterrupt.

Other errors ignored.

11/9/23 15Advanced Error Handling

May have ValueError

May have
KeyboardInterrupt

Handling Errors by Type

• try-except can put the error in a variable
• Example:

try:
val = input() # get number from user
x = float(val) # convert string to float
print('The next number is '+str(x+1))

except ValueError as e:
print(e.args[0])
print('Hey! That is not a number!')

11/9/23 16Advanced Error Handling

Some Error subclasses
have more attributes

Creating Errors in Python

def foo(x):
 assert x < 2, 'My error'
 …

def foo(x):
 if x >= 2:
 m = 'My error'
 err = AssertionError(m)
 raise err

11/9/23 Advanced Error Handling 17

• Create errors with raise
§ Usage: raise <exp>
§ exp evaluates to an object
§ An instance of Exception

• Tailor your error types
§ ValueError: Bad value
§ TypeError: Bad type

• Still prefer asserts for
preconditions, however
§ Compact and easy to read

Identical

Creating Errors in Python

def foo(x):
 assert x < 2, 'My error'
 …

def foo(x):
 if x >= 2:
 m = 'My error'
 err = ValueError(m)
 raise err

11/9/23 Advanced Error Handling 18

• Create errors with raise
§ Usage: raise <exp>
§ exp evaluates to an object
§ An instance of Exception

• Tailor your error types
§ ValueError: Bad value
§ TypeError: Bad type

• Still prefer asserts for
preconditions, however
§ Compact and easy to read

Identical

Raising and Try-Except

def foo():
 x = 0
 try:
 raise Exception()
 x = 2
 except Exception:
 x = 3
 return x

• The value of foo()?

11/9/23 Advanced Error Handling 19

A: 0
B: 2
C: 3
D: No value. It stops!
E: I don’t know

Raising and Try-Except

def foo():
 x = 0
 try:
 raise Exception()
 x = 2
 except Exception:
 x = 3
 return x

• The value of foo()?

11/9/23 Advanced Error Handling 20

A: 0
B: 2
C: 3
D: No value. It stops!
E: I don’t know

Correct

Raising and Try-Except

def foo():
 x = 0
 try:
 raise Exception()
 x = 2
 except BaseException:
 x = 3
 return x

• The value of foo()?

11/9/23 Advanced Error Handling 21

A: 0
B: 2
C: 3
D: No value. It stops!
E: I don’t know

Raising and Try-Except

def foo():
 x = 0
 try:
 raise Exception()
 x = 2
 except BaseException:
 x = 3
 return x

• The value of foo()?

11/9/23 Advanced Error Handling 22

A: 0
B: 2
C: 3
D: No value. It stops!
E: I don’t know

Correct

Raising and Try-Except

def foo():
 x = 0
 try:
 raise Exception()
 x = 2
 except AssertionError:
 x = 3
 return x

• The value of foo()?

11/9/23 Advanced Error Handling 23

A: 0
B: 2
C: 3
D: No value. It stops!
E: I don’t know

Raising and Try-Except

def foo():
 x = 0
 try:
 raise Exception()
 x = 2
 except AssertionError:
 x = 3
 return x

• The value of foo()?

11/9/23 Advanced Error Handling 24

A: 0
B: 2
C: 3
D: No value. It stops!
E: I don’t know

Correct

Python uses isinstance
to match Error types

Creating Your Own Exceptions

class CustomError(Exception):
 """An instance is a custom exception"""
 pass

This is all you need!
§ No extra attributes
§ No extra methods
§ No constructors
Inherit everything

11/9/23 25Advanced Error Handling

Only issues is choice
of parent error class.
Use Exception if you

are unsure what.

Case Study: Files

• Can read the contents of any file with open()
§ Returns a file object with method read()
§ Method read() returns contents as a string
§ Remember to close() file when done

• There are SO many errors that can happen
§ FileNotFoundError: File does not exit
§ PermissionError: You are not allowed to read it
§ Other errors possible when processing data

11/9/23 Advanced Error Handling 26

Recall: JSON Files
{
 "wind" : {
 "speed" : 13.0,
 "crosswind" : 5.0
 },
 "sky" : [
 {
 "cover" : "clouds",
 "type" : "broken",
 "height" : 1200.0
 },
 {
 "type" : "overcast",
 "height" : 1800.0
 }
]
}

11/9/23 Advanced Error Handling 27

• Look like a nested dict
§ But read in as a string
§ You have to convert it

• Python module json
§ Function loads()

Converts str -> dict
§ Function dumps()

Convert dict -> str

• Conversion is sensitive
§ Stray commas crash it

Reading a JSON File

def read_json(fname):
 try:
 file = open(fname)
 data = file.read()
 file.close()
 result = json.loads(data)
 return result
 except FileNotFoundError:
 print(fname +' not found')
 except JsonDecodeError:
 print(fname +' is invalid')
 return None
11/9/23 Advanced Error Handling 28

Close file
when done

Could not
find file

JSON contents
are not valid

Open file
with name

If failed

Note that we can
chain excepts like
an if-elif statement

Reading a File in General

def read_foo(fname):
 try:
 file = open(fname)
 data = file.read()
 file.close()
 result = convert(data)
 return result
 except FileNotFoundError:
 print(fname +' not found')
 except MyConversionError:
 print(fname +' is invalid')
 return None
11/9/23 Advanced Error Handling 29

Error specific
to the file format

Custom helper
for this file type

All the work is
in conversion step

Aside: Pathnames

• Files obey the same rule as other modules
§ To read a file, it must be in the same folder
§ Otherwise, you must use a pathname for file

• Relative path: directions from current folder
§ macOS: '../../lec22/file.txt'
§ Windows: '..\..\lec22\file.txt'

• Absolute path: directions that work anywhere
§ macOS: '/Users/white/cs1110/lect22/file.txt'
§ Windows: 'C:\Users\white\cs1110\lect22\file.txt'

11/9/23 Advanced Error Handling 30

Like navigating
command shell

Aside: Pathnames

• Files obey the same rule as other modules
§ To read a file, it must be in the same folder
§ Otherwise, you must use a pathname for file

• Relative path: directions from current folder
§ macOS: '../../lec22/file.txt'
§ Windows: '..\..\lec22\file.txt'

• Absolute path: directions that work anywhere
§ macOS: '/Users/white/cs1110/lect22/file.txt'
§ Windows: 'C:\Users\white\cs1110\lect22\file.txt'

11/9/23 Advanced Error Handling 31

Like navigating
command shell

Note the change
in slash direction

Pathnames are OS Specific

• This makes reading files harder
§ May work on Windows but crash on macOS!
§ Yet another error message we need to handle

• Solution: Use the module os.path
§ Builds a pathname string for current os

• Example: os.path('..', 'cs1110', 'lec22', 'file.txt')
§ macOS: '../cs1110/lec22/file.txt'
§ Windows: '..\cs1110\lec22\file.txt’

• Absolute paths are a little trickier, but similar
11/9/23 Advanced Error Handling 32

Final Word on Error Handling

• Versions of try-except exist in most languages
§ Java, C++, C#, Objective-C all have it

• But those languages try to minimize its use
§ Give application a way to crash “nicely”
§ Because processing a try-except it quite slow

• Python has a very different philosophy
§ Python is sort-of slow; exceptions are not slower
§ It is okay to use try-except all the time
§ Encourages its use as much as if-statements

11/9/23 Advanced Error Handling 33

Final Word on Error Handling

• Versions of try-except exist in most languages
§ Java, C++, C#, Objective-C all have it

• But those languages try to minimize its use
§ Give application a way to crash “nicely”
§ Because processing a try-except it quite slow

• Python has a very different philosophy
§ Python is sort-of slow; exceptions are not slower
§ It is okay to use try-except all the time
§ Encourages its use as much as if-statements

11/9/23 Advanced Error Handling 34

Developers refer to coding
styles unique to python

as pythonic programming

