11/5/23

A Problem with Subclasses

class Fraction(object):

""Instances are normal fractions n/d""
INSTANCE ATTRIBUTES

_numerator: int

_denominator: int > 0

class FractionalLength(Fraction):
""Instances are fractions with units """
INSTANCE ATTRIBUTES same but
_unit: one of 'in', 'ft', 'yd'
def __init__(self,n,d,unit):
"""Make length of given units""
assert unit in ['in’, 'ft', 'yd']
super().__init__(n,d)
self._unit = unit

>>>p = Fraction(1,2)
>>> q = FractionalLength(1,2,'t")
>>>p=p*q

Python
converts to

>>>p=p._ mul_ (@) # ERROR

__mul__ has precondition
type(q) == Fraction

The isinstance Function

* isinstance(<obj>,<class>)
= True if <obj>’s class is same
as or a subclass of <class>

= False otherwise id4

* Example:
= isinstance(e,Executive) is True
= isinstance(e,Employee) is True
= isinstance(e,object) is True
= iginstance(e,str) is False

* Generally preferable to type
= Works with base types too!

ane
i 50]
_bonus

Fixing Multiplication

class Fraction(object):
"""Instances are fractions n/d""
_numerator: int

_denominator: int > 0

def __mul__(self,q):
""Returns: Product of self, q
Makes a new Fraction; does not
modify contents of self or q
Precondition: g a Fraction™"
top = self.numerator*q.numerator
bot = self.denominator*q.denominator
return Fraction(top,bot)

>>>p = Fraction(1,2)
>>> q = FractionalLength(1,2,'t")
>>>p=p*q

Python
converts to

>>>p=p._ mul_ (@) # OKAY

Can multiply so long as it
has numerator, denominator

Error Types

in Python

* All errors are instances of class BaseException
* This allows us to organize them in a hierarchy

f

Exception

|

BaseException

id4

Python Error Type Hierarchy

Argument has
wrong value
(e.g. float('a"))

Argument has
wrong type
(e.g. float([1])

AssertionError — means “extends”
or “is an instance of”
Handling Errors by Type

* try-except blocks can be restricted to specific errors
= Doe except if error is an instance of that type
= If error not an instance, do not recover

* Example:
try:

May have IOError

/

| AssertionError ” AttributeError | ArithmeticError | 10OError ” TypeError ”_ValueError |

| ZeroDivisionError ” OverﬂowErrorl

http://docs.python.org/

Wh; ?
library/exceptions.html [¥ so many error types]

| val = inputQ
x = float(val)

except ValueError:

get number from user

convert string to float €—w7_
| print('The next number is +str(x+1))

May have ValueError

Only recovers _/a]ueError.

Oth s d.
\ print('Hey! That is not a numberly< oo wgnore

Creating Errors in Python

¢ Create errors with raise def foo(x):

assert x <, 'My error'

= Usage: raise <exp>
= exp evaluates to an object
= An instance of Exception

« Tailor your error types

def foo(x):
= ValueError: Bad value .
= TypeError: Bad type ifx>= '2: '
« Still prefer asserts for m = My error
preconditions, however err = AssertionError(m)
raise err

= Compact and easy to read

Handling Errors by Type

* try-except can put the error in a variable

* Example:
try:
val = input() # get number from user
x = float(val) # convert string to float

print('The next number is '+str(x+1))
except ValueError as e:

print(e.args[0])

print('Hey! That is not a number!")

Some Error subclasses
have more attributes

11/5/23

Creating Your Own Exceptions

class CustomError(Exception):
"""An instance is a custom exception"""
pass

Only issues is choice
of parent error class.
Use Exception if you
are unsure what.

This is all you need
= No extra fields
= No extra methods
= No constructors

Inherit everything

Reading a JSON File

def read_json(fname): [Open file
try: with name
file = open(fname)
data = file.r
file.close() when done
result = json.loads(data)
return result

except FileNotFoundError: find file
print(fname +' not found') JSON contents

except JsonDecodeError:
print(fname + is invalid")

Note that we can

chain excepts like
an if-elif statement

Aside: Pathnames

10

* Files obey the same rule as other modules
= To read a file, it must be in the same folder
= Otherwise, you must use a pathname for file

* Relative path: directions from current folder
= macOS: "../../lecR’/file.txt' Like navigating
» Windows: .\..\lec22\file.txt' (Ml

* Absolute path: directions that work anywhere
= macOS: '/Users/white/cs1110/lectR’/file.txt'
= Windows: 'C:\Users\white\cs1110\lect22\file.txt'

Pathnames are OS Specific

* This makes reading files harder
= May work on Windows but crash on macOS!
= Yet another error message we need to handle
¢ Solution: Use the module os.path
= Builds a pathname string for current os
* Example: os.path('..', 'es1110', lec22', 'file.txt")
= macOS: '../cs1110/1ecR®/file.txt'
= Windows: "..\cs1110\1ec22\file.txt’
* Absolute paths are a little trickier, but similar

11

12

