
10/29/23

1

Beyond Sequences: The while-loop

while <condition>:
 statement 1
 …
 statement n

condition
true

false

body

• Broader notion of loop
§ You define “more to do”
§ Not limited sequences

• Must manage loop var
§ You create it before loop
§ You update it inside loop
§ For-loop automated it

• Trickier to get right

Vs For-Loop

loop
body

loop
condition

1

while Versus for

For-Loop

def sum_squares(n):
 """Rets: sum of squares
 Prec: n is int > 0"""
 total = 0
 for x in range(n):

 total = total + x*x

While-Loop

def sum_squares(n):
 """Rets: sum of squares
 Prec: n is int > 0"""
 total = 0
 x = 0
 while x < n:

 total = total + x*x
 x = x+1

Must remember
to increment

2

Tracing While-Loops

print('Before while')
total = 0
x = 0
while x < n:
 print('Start loop '+str(x))

total = total + x*x
x = x + 1
print('End loop ')

print('After while')

Output:
Before while
Start loop 0
End loop
Start loop 1
End loop
Start loop 2
End loop
After while

Important

Important

3

How to Design While-Loops

• Many of the same rules from for-loops
§ Often have an accumulator variable
§ Loop body adds to this accumulator

• Differences are loop variable and iterable
§ Typically do not have iterable

• Breaks up into three design patterns
1. Replacement to range()
2. Explicit goal condition
3. Boolean tracking variable

4

Replacing the Range Iterable
range(a,b)

i = a
while i < b:
 process integer i
 i = i + 1

store in count # of '/'s in String s
count = 0
i = 0
while i < len(s):
 if s[i] == '/':
 count= count + 1
 i= i +1
count is # of '/'s in s[0..s.length()-1]

range(c,d+1)
i= c
while i <= d:
 process integer i
 i= i + 1

Store in double var. v the sum
1/1 + 1/2 + …+ 1/n
v = 0; # call this 1/0 for today
i = 1
while i <= n:
 v = v + 1.0 / i
 i= i +1
v= 1/1 + 1/2 + …+ 1/n

5

Using the Goal as a Condition

def prompt(prompt,valid):
 """Returns: the choice from a given prompt.

 Preconditions: prompt is a string, valid is a tuple of strings"""
 response = input(prompt)

 # Continue to ask while the response is not valid.
 while not (response in valid):
 print('Invalid response. Answer must be one of ')+str(valid)
 response = input(prompt)

 return response

6

10/29/23

2

Using a Boolean Variable

def roll_past(goal):
 """Returns: The score from rolling a die until passing goal."""
 loop = True # Keep looping until this is false
 score = 0
 while loop:
 roll = random.randint(1,6)
 if roll == 1:
 score = 0; loop = False
 else:
 score = score + roll; loop = score < goal
 return score

Track the
condition

7

Advantages of while vs for

table of squares to N
 seq = []
 n = floor(sqrt(N)) + 1
 for k in range(n):
 seq.append(k*k)

table of squares to N
 seq = []
 k = 0
 while k*k < N:
 seq.append(k*k)
 k = k+1

A for-loop requires that
you know where to stop
the loop ahead of time

A while loop can use
complex expressions to
check if the loop is done

8

Difficulties with while

def rem3(lst):
 """Remove all 3's from lst"""
 i = 0
 while i < len(lst):
 # no 3’s in lst[0..i–1]
 if lst[i] == 3:
 del lst[i]
 else:
 i = i+1

def rem3(lst):
 """Remove all 3's from lst"""
 while 3 in lst:
 lst.remove(3)

Be careful when you modify the loop variable

Stopping
point keeps
changing

The stopping condition is not
a numerical counter this time.

Simplifies code a lot.

9

Application: Convergence

• How to implement this function?
def sqrt(c):
 """Returns the square root of c"""

• Consider the polynomial f(x) = x2 – c
§ Value sqrt(c) is a root of this polynomial

• Suggests a use for Newton’s Method
§ Start with a guess at the answer
§ Use calculus formula to improve guess

10

The Final Result

def sqrt(c,err=1e-6):
 """Returns: sqrt of c with given margin of error.

 Preconditions: c and err are numbers > 0"""
 x = c/2.0

 while abs(x*x-c) > err:
 # Get xn+1 from xn

 x = x/2.0+c/(2.0*x)

 return x

11

Using while-loops Instead of for-loops

Advantages

• Better for modifying data
§ More natural than range
§ Works better with deletion

• Better for convergent tasks
§ Loop until calculation done
§ Exact steps are unknown

• Easier to stop early
§ Just set loop var to False

Disadvantages

• Performance is slower
§ Python optimizes for-loops
§ Cannot optimize while

• Infinite loops more likely
§ Easy to forget loop vars
§ Or get stop condition wrong

• Debugging is harder
§ Will see why in later lectures

12

