CS 1110

Prelim 2 Review
Fall 2023
Exam Info

- **Prelim 2**: Tuesday, November 21st at 7:30 pm
 - Last name A – C in Ives 305
 - Last name D – E in Ives 105
 - Last name F – Q in Statler Aud.
 - Last name R – Z in Uris G01
 - SDS Students will get an e-mail

- **Exceptions ONLY if you filed a conflict**
 - We expect you at time and room assigned
Studying for the Exam

• Read study guides, review slides online
 ▪ Solution to review posted after review

• Review all labs and assignments
 ▪ Solutions to Assignment 5 are in CMS
 ▪ No solutions to code, but talk to TAs

• Look at exams from past years
 ▪ Exams with solutions on course web page
 ▪ Only look at fall exams; spring is **VERY** different
What is on the Exam?

- **Four or Five questions** on these topics:
 - Recursion (Labs 15 and 16; A4)
 - Iteration (Labs 13, 17, and 21; A4; A6)
 - Defining classes (Labs 18, 19, 20, & 22; A6)
 - Drawing folders (Lecture; A5)
 - Short Answer (Terminology, Potpourri)

- + 2 pts for writing your name and net-id
- Exact number depends on question length
What is on the Exam?

• Recursion (Labs 15 and 16; A4)
 § Will be given a function specification
 § Implement it using recursion
 § May have an associated call stack question

• Iteration (Labs 13, 17, and 21; A4; A6)

• Defining classes (Labs 18, 19, 20, and 22; A6)

• Drawing folders (Lecture; A5)

• Short Answer (Terminology, Potpourri)
def filter(nlist):
 """Return: a copy of nlist (in order) with negatives removed.
 The order of the original list is preserved
 Example: filter([1,-1,2,-3,-4,0]) returns [1,2,0]
 Precondition: nlist is a (possibly empty) list of numbers."""
def filter(nlist):
 """Return: a copy of nlist (in order) with negatives removed.
 The order of the original list is preserved.
 Example: filter([1,-1,2,-3,-4,0]) returns [1,2,0]
 Precondition: nlist is a (possibly empty) list of numbers."

 Hint:
 • Use divide-and-conquer to break up the list
 • Filter each half and put back together
def histogram(s):
 """Return: a histogram (dictionary) of the # of letters in string s.

 The letters in s are keys, and the count of each letter is the value. If
 the letter is not in s, then there is NO KEY for it in the histogram.

 Example: histogram('') returns {},
 histogram('abracadabra') returns {'a':5,'b':2,'c':1,'d':1,'r':2}

 Precondition: s is a string (possibly empty) of just letters."""
def histogram(s):
 """Return: a histogram (dictionary) of the # of letters in string s.

 The letters in s are keys, and the count of each letter is the value. If
 the letter is not in s, then there is NO KEY for it in the histogram.

 Precondition: s is a string (possibly empty) of just letters."""

Hint:

• Use divide-and-conquer to break up the string
• Get two dictionaries back when you do
• Pick one and insert the results of the other
def skip(s):

 """Returns: copy of s
 Odd (from end) skipped""

 result = ''

 if (len(s) % 2 = 1):
 result = skip(s[1:])

 elif len(s) > 0:
 result = s[0]+skip(s[1:])

 return result

- **Call**: skip('abc')
- Recursive call results in four frames (why?)
 - Stop when 4th frame completes line 6
 - Draw the entire call stack at that time
- Do not draw more than four frames!
What is on the Exam?

• Recursion (Labs 15 and 16; A4)
• Iteration (Labs 13, 17, and 21; A4; A6)
 ▪ Again, given a function specification
 ▪ Implement it using a for-loop
 ▪ May involve 2-dimensional lists
• Defining classes (Labs 18, 19, 20, and 22; A6)
• Drawing folders (Lecture; A5)
• Short Answer (Terminology, Potpourri)
def evaluate(p, x):
 """Returns: The evaluated polynomial p(x)
We represent polynomials as a list of floats. In other words

 [1.5, -2.2, 3.1, 0, -1.0] is 1.5 – 2.2x + 3.1x**2 + 0x**3 – x**4

We evaluate by substituting in for the value x. For example

 evaluate([1.5,-2.2,3.1,0,-1.0], 2) is 1.5–2.2(2)+3.1(4)–1(16) = -6.5
 evaluate([2], 4) is 2

Precondition: p is a list (len > 0) of floats, x is a float"""
```python
def max_cols(table):
    """Returns: Row with max value of each column
    We assume that table is a 2D list of floats (so it is a list of rows and
each row has the same number of columns. This function returns
a new list that stores the maximum value of each column.
Examples:
    max_cols([ [1,2,3], [2,0,4], [0,5,2] ]) is [2,5,4]
    max_cols([ [1,2,3] ]) is [1,2,3]

Precondition: table is a NONEMPTY 2D list of floats"
```
What is on the Exam?

• Recursion (Labs 15 and 16; A4)
• Iteration (Labs 13, 17 and 21; A4, A6)
• Defining Classes (Labs 18, 19, 20, and 22; A6)
 - Given a specification for a class
 - Also given a specification for a subclass
 - Will “fill in blanks” for both
• Drawing folders (Lecture; A5)
• Short Answer (Terminology, Potpourri)
```python
class Customer(object):
    """Instance is a customer for our company"""
    # MUTABLE ATTRIBUTES:
    # _name: string or None if unknown
    # _email: string or None if unknown
    # IMMUTABLE ATTRIBUTES:
    # _born: int > 1900; -1 if unknown

    # DEFINE GETTERS/SETTERS HERE
    # Enforce all invariants and enforce immutable/mutable restrictions

    # DEFINE INITIALIZER HERE
    # Initializer: Make a Customer with last name n, birth year y, e-mail address e.
    # E-mail is None by default
    # Precondition: parameters n, b, e satisfy the appropriate invariants

    # OVERLOAD STR() OPERATOR HERE
    # Return: String representation of customer
    # If e-mail is a string, format is 'name (email)'
    # If e-mail is not a string, just returns name
```
class PrefCustomer(Customer):

 """An instance is a 'preferred' customer"""

 # MUTABLE ATTRIBUTES (in addition to Customer):
 # _level: One of 'bronze', 'silver', 'gold'

 # DEFINE GETTERS/SETTERS HERE
 # Enforce all invariants and enforce immutable/mutable restrictions

 # DEFINE INITIALIZER HERE
 # Initializer: Make a new Customer with last name n, birth year y,
 # e-mail address e, and level l
 # E-mail is None by default
 # Level is 'bronze' by default
 # Precondition: parameters n, b, e, l satisfy the appropriate invariants

 # OVERLOAD STR() OPERATOR HERE
 # Return: String representation of customer
 # Format is customer string (from parent class) +', level'
 # Use __str__ from Customer in your definition
What is on the Exam?

- Recursion (Labs 15 and 16; A4)
- Iteration (Labs 13, 17, and 21; A4, A6)
- Defining classes (Labs 18, 19, 20, and 22; A6)
- Drawing class folders (Lecture; A5)
 - Given a skeleton for a class
 - Also given several assignment statements
 - Draw all folders and variables created
- Short Answer (Terminology, Potpourri)
Two Example Classes

class CongressMember(object):
 """Instance is legislator in congress"""
 # INSTANCE ATTRIBUTES:
 # _name: a string

def getName(self):
 return self._name

def setName(self, value):
 assert type(value) == str
 self._name = value

def __init__(self, n):
 self.setName(n) # Use the setter

def __str__(self):
 return 'Honorable ' + self.name

class Senator(CongressMember):
 """Instance is legislator in congress"""
 # INSTANCE ATTRIBUTES (additional):
 # _state: a string

 def getState(self):
 return self._state

 def setName(self, value):
 assert type(value) == str
 self._name = 'Senator ' + value

 def __init__(self, n, s):
 assert type(s) == str and len(s) == 2
 super().__init__(n)
 self._state = s

 def __str__(self):
 return (super().__str__() +
 ' of ' + self.state)
‘Execute’ the Following Code

```python
>>> b = CongressMember('Jack')
>>> c = Senator('John', 'NY')
>>> d = c
>>> d.setName('Clint')
```

- Draw two columns:
 - Global space
 - Heap space
- Draw both the
 - Variables created
 - Object folders created
 - Class folders created
- If an attribute changes
 - Mark out the old value
 - Write in the new value

Remember:
Commands outside of a function definition happen in global space
What is on the Exam?

- Recursion (Labs 15 and 16; A4)
- Iteration (Labs 13, 17, and 21; A4; A6)
- Defining classes (Labs 18, 19, 20, and 22; A6)
- Drawing class folders (Lecture; A5)
- Short Answer (Terminology, Potpourri)
 - See the study guide
 - Look at the lecture slides
 - Look at the lecture demo code

In that order
Any More Questions?