CS 1110 Prelim 2 Solutions, April 2022

1. [8 points] What’s the point? Imagine a word-based game like Scrabble where:
e Global variable points is a dictionary whose keys are letters and values are the points earned
for using that letter:
points = {'a':1, 'b':3, 'c':3, 'd':2, 'e':1, ... , 'w':4, 'x':8, 'y':4, 'z':10}
e Words get placed on a board such that some of the word’s individual letters might lie on
places that earn a bonus of double or triple points.

For a given word, bonus multipliers for the word’s letters are stored in a list mults, each entry
of which is either 1 (no change), 2 (double the score), or 3 (triple the score).

e A word’s score is the sum of each of its individual letter’s scores after any bonus multipliers.
Examples: From dictionary points, we know the following point values: ’e’: 1 and 'w’: 4.

word mults score

“eww” [1,1,1] 1x1+4+4x14+4x1=9
“eww” [1, 2, 3} Ix1+4%x24+4%x3 =21
“we” (2, 3] 4x2+1x3 =11

Implement the following function.

def score_word(word, mults):
""" Given “word®w & its letter multipliers “mults’, returns word's score, an int

Precondition (no need to assert):
word [str]: contains only lowercase letters, length >= 1.
mults: 1list of ints with same length as “word™.
Each entry is either 1, 2, or 3.

“points® is a dictionary in **global spacex* (not a parameter of this
function) as described in the problem text. """

score = 0

for i in range(len(word)):
pt = points[word[i]]
score += (pt * mults([i])

return score

2. [12 points] We need a holiday! Implement the following function, using for-loops effectively.

def num_holidays(holiday_list):
"""Returns the number of days off, given a non-empty list of holidays, holiday_list
that has no duplicate holidays and no overlapping holidays

A holiday is a list of 2-3 items:
* a non-empty string, the name of the holiday
* a start date
* an optional end date (if the holiday lasts longer than 1 day).
This is the last day the holiday is celebrated.
A date is a list with 2 items:
* a non-empty string, the month
* an int, the day of the month (assume valid number for the month)

You may assume that all holidays start and end in the same month.

Examples:
SU22 = [["Juneteenth", ["Jun", 20]]] # 1 day holiday
num_holidays(SU22) --> returns 1

FA21 = [["Labor Day", ["Sep", 611, # 1 day holiday
["Fall Break", ["Oct", 9], ["Oct", 12]], # 4 day holiday
["Thanksgiving", ["Nov", 24], ["Nov", 28]] # 5 day holiday

num_holidays(FA21) --> returns 10

n_holidays = 0
for holiday in holiday_list:
if len(holiday) == 2:
n_holidays +=1
else:
start = holiday[1] [1]
stop = holiday[2] [1]
n_holidays += stop - start + 1
return n_holidays

Page 2

3. Class it up! In the previous question, dates were represented as lists. Now let’s represent
them using classes.

(a) [2 points] In the code below, insert python code that creates the class attribute MAX_DAYS.
(b) [6 points] In the code below, insert python code that completes Date’s __init__() method.

class Date:
"""Objects represent an instance of a Date.

Class attributes:
MAX_DAYS: 31, the maximum number of days that any month can have

Instance attributes:
month [str]: 3-character, uppercase abbreviation of the month
day [int]: the day of the month, 0 < day <= MAX_DAYS for a Date """

MAX_DAYS = 31

def __init__(self, m, d):
""" Creates a new Date with attributes set as follows:
month: the first 3 characters of m, uppercase
day: set to d, **0R** the max legal value if d is too large

Preconditions: (STUDENTS: don't assert them)
m: a str with len >= 3
d: an int, 0 < d rn

self .month = m[0:3].upper ()

if d > Date.MAX_DAYS:
d = Date.MAX_DAYS
self.day = d
alternate version of the above:
self.day = min(d, Date.MAX_DAYS)

Page 3

(c)

[2 points] Given the Date class as it is defined on the previous page, what is the value of
x after executing the following code?

dl = Date("August", 12)

d2 = Date("August", 12)

x = (d1 == 42)

Circle One: True False Neither*

*because an Error occurs before x is given a value

Correct Answer: False
[4 points] Override the following special method of class Date according to its specification.

def __eq__(self, other):
""" Returns: True if the month and day of the Dates are equal,
False o.w.

Precondition (no need to assert): other is a Date. e

return self.month == other.month and self.day == other.day

[2 points] The precondition above does not state that self needs to be a Date. Does ask-
ing Python to evaluate the expression "annoying string" == Date("Feb", 29) cause
the Date __eq__() method to be called with a value of self or other not being a Date?
Explain your answer. (Credit given only for correct explanation — an answer of just “Yes”
or “No” will not receive points.)

Given what we have learned in CS1110 so far, how we would reason is as follows. Date’s
_eq__() is only called when you have an expression like d1 == d2 where d1 — the item
on the left-hand side of the double-equals — is a Date. If d1 isn’t a Date, then a different
eq() method is called. (In the given example, it would be the __eq () method for
strings.!)

Notes:

e The instance attributes day and month are not relevant to the question.

e An _eq_ () method can be invoked even when the items on the two sides of the ==
are of different types.

e What Date’s __eq-_() evaluates to is not relevant to the question.

e Python does not require the value of self in a method call to be an object of the
method’s class; it just typically doesn’t cause that to happen.

'"Extremely technical details which are completely beyond the scope of CS1110: the str __eq_()__ will return

NotImplemented because the writers of the string class decided that’s what happens when the “other” object is a
non-string. This NotImplemented value causes Python to then try using the __eq-_() method for the right-hand object
applied to the left-hand object, and then an error will occur, because strings don’t have month or day attributes.
This complex situation is why we are only grading this question on reasoning, not on the yes/no answer a student

supplies. See https://stackoverflow.com/questions/2281222/why-when-in-python-does-x-y-call-y-eq-x.

Page 4

4. [20 points] A Picture is worth a thousand words ...and

points. Diagram the

execution of each of the following code snippets. Include global variables, object folders and
class folders, but omit call frames.

If the code changes a value, write in the old value and then cross it out. (Don’t just erase.)

If an error occurs, diagram all variable/attribute changes that occur before the error occurs,

and then write “ERROR” in large letters in the box containing the code.

class A:

e

b=1
d =2

def __init__(self):

self.d = 3

AQ)
= e.b
e.d

“ O T O
n o

def __init__(self):

self.d = 2

Global Space Heap
id1
: A :
b | : |
x[1]
a2] d [31]
__init_ (self)
Class Folder Object Folder
Global Space Heap
A id1

M

o[1]

init (self)

a2_]
b2]

Page 5

Class Folder

Object Folder

def __init__(self): Global Space Heap

1f.d = 2 .
se o A id1 ~
b[1]

e = AQ)
A.b=A.d
d
A.d =3 - [:::::]
__init_ (self)
x = A.b
. Class Folder Object Folder

An error occurs for line
A.b = A.d
class A: Global Space Heap

b=1 .

A id1
def __init__(self): e A
self.d = 2 b |I|
d[1]
¢ = 20 T o
init_ (self)

e.d =3
A.d=AD Class Folder Object Folder
x = e.d

5. Where’s Waldo? This question involves a Person class with 2 instance attributes:

e name [str]

e parents [list of Persons], possibly empty

You may assume that no person appears twice in a family tree.

The function below is buggy. It does not accomplish the task in its specification.

1 def find_waldo_broken(p):

2 """ Returns:

3 True if any ancestor of p (including p) has the name "Waldo"
4 False if no ancestor of p (including p) has the name "Waldo"
5 Precondition (no need to assert): p is a person

6 nnn

7 if p.name == "Waldo":

8 return True

Page 6

9 found = False

10 for parent in p.parents:
1 found = find_waldo_broken(parent)
12 return found

13

(a) [2 points] Identify the problem. Describe the problem with the above implementation:

>

Y’all are wrong. This function works according to its specification!

B) This function always returns False.

Q

This function always returns True.

(
(
(
(

=)

(E
(

(G) The function could run forever.

Circle One: A B C D E F G
Correct Answer: E

)
)
)
) This function sometimes returns True when p has no a family member named “Waldo”.
) This function sometimes returns False when p has a family member named “Waldo”.
)

e

The function code could throw an error, even when the preconditions are met.

(b) [6 points] Modify the code above so that it accomplishes the task in its specification.
(Your answer should be edits to the original code.)

Change lines 9-end in the original with lines 3-end of the following.

1 if p.name == "Waldo":

2 return True

3 for parent in p.parents:

4 if find_waldo_broken(parent):
5 return True

6 return False

Alternate solution: replace line 11 in the original with lines 5-6 in the following.

1 if p.name == "Waldo":

2 return True

3 found = False

4 for parent in p.parents:

if find_waldo_broken(parent):
6 found = True
7 return found

S

Alternate solution, suggested by a student: replace line 11 in the original with:

Page 7

found = found or find_waldo_broken(parent)
Note that in this alternate solution, once found is set to True, found is never set to False
and the recursion to the right of the “or” isn’t even run, due to short-circuit evaluation.

6. [16 points] Let’s talk about Bruno! This question involves a Person class with 3 instance
attributes:
e name [str]
e birthyear [int], must be > 0 and < 2023 (there is no time travel)

e parents [list of Persons], possibly empty

You may assume that no Person appears twice in a family tree. You may also assume that
everyone is born later than their parents.

Implement the following function, making effective use of recursion.

def earliest_bruno(p):

Returns: the birthyear of the earliest born ancestor named "Bruno"
None if there is no ancestor named "Bruno"
this includes p

Example: 1if there are two ancestors named "Bruno" born in 2000 and 1909,
--> returns 1909

Precondition (no need to assert): p is a person e

This solution uses the idea of initializing a variable small to a non-None, but impossible final

answer.
1 small = 2023 # earliest Bruno birth so far, or 2023 for none found

2 for parent in p.parents:

3 year = earliest_bruno(parent)

4 if year != None and year < small: # found an earlier Bruno birth
5 small = year

6 if small == 2023: # no Bruno among parents and above

7 if p.name == "Bruno":

8 return p.birthyear

9 else:

10 return None

11 else:

12 return small # Bruno among parents must be earlier than p

Similar solution — main difference is in logic after the for-loop.

1 small = 2023
2 for parent in p.parents:
3 parent_result = earliest_bruno(parent)

Page 8

10

11

if parent_result is not None and parent_result < small:
small = parent_result
if small == 2023 and p.name == "Bruno": # p is earliest Bruno
small = p.birthyear
elif small == 2023:
return None
return small # Bruno among parents must be earlier than p

Another alternate solution, inspired by student answer, that does not involve using an “impos-
sible” value for the eventual result variable. Short-circuit evaluation is used in line 7 to ensure
that small is not None before comparing it to parent_result.

if p.name == "Bruno":
small = p.birthyear
else:
small = None
for parent in p.parents:
parent_result = earliest_bruno(parent)
if parent_result is not None and (small is None or small > parent_result):
small = parent_result
return small

Another alternate solution, inspired by student answer: instead of keeping a single minimum-
found-so-far variable, keep a list of earliest Bruno birthyears found for each parent, plus perhaps
p’s birthyear if it is named Bruno.

bruno_births = [] # keep a list of earliest bruno birthyears
if p.name == "Bruno":
bruno_births.append(p.birthyear)
for parent in p.parents:
bruno_birth_from_parent = earliest_bruno(parent)
if bruno_birth_from_parent is not None:
bruno_births.append(bruno_birth_from_parent)
if bruno_births == []:
return None
else:

return sorted(bruno_births) [0] # the year at position O when bruno_births is sorted

Page 9

