CS 1110

Prelim 1 Review Fall 2023

Exam Info

- Prelim 1: Thursday, October 12th at 7:30 pm
- Last name A - C in Ives 305
- Last name D - E in Ives 105
- Last name F- Q in Statler Aud.
- Last name $\mathbf{R}-\mathbf{Z}$ in Uris G01
- SDS Students will get an e-mail
- Exceptions ONLY if you filed a conflict
- Grades promised Sunday, October 15th

Studying for the Exam

- Read study guides, review slides online
- Solution to review posted after review
- Review all labs and assignments
- Solutions to Assignment 2 are in CMS
- No solutions to code, but talk to TAs
- Look at exams from past years
- Exams with solutions on course web page
- Only look at the fall exams; spring is different

Grading

- We will announce approximate letter grades
- We adjust letter grades based on all exams
- But no hard guidelines (e.g. mean = grade X)
- May adjust borderline grades again at final grades
- Use this to determine whether you want to drop
- Drop deadline is next week, October $16^{\text {th }}$
- Will have open office hours on that day to meet
- Will reach out to students of concern (C or lower)

What is on the Exam?

- Five Questions on the following topics:
- String slicing functions (A1)
- Call frames and the call stack (A2)
- Functions on mutable objects (A3)
- Testing and debugging (Labs 6 and 10)
- Short Answer (Terminology)
- +2 pts for writing your name and net-id

What is on the Exam?

- Five Questions on the following topics:
- String slicing functions (A1)
- Call frames and
- Functi What about lists?
- Testind sougging (Labs 6 and 10)
- Short Answer (Terminology)
- +2 pts for writing your name and net-id

What is on the Exam?

- Five Questions on the following topics:
- String slicing functions
- Call frames and the call stack
- Functions on mutable objects
- Testing and debugging
- Short Answer

Lists may appear in any of these 5

- +2 pts for writing your name and net-id

What is on the Exam?

- String slicing functions (A1)
- Will be given a function specification
- Implement it using string methods, slicing
- Call frames and the call stack (A2)
- Functions on mutable objects (A3)
- Testing and debugging (Labs 6 and 10)
- Short Answer (Terminology)

String Slicing

def make_netid(name,n):
"""Returns: a netid for name with suffix n
Netid is either two letters and a number (if the student has no middle name) or three letters and a number (if the student has a middle name). Letters in netid are lowercase.

Example: make_netid('Walker McMillan White',2) is 'wmw2'
Example: make_netid('Walker White',4) is 'ww4'
Parameter name: the student name
Precondition: name is a string either with format 'first last' or 'first middle last'

Parameter n: the netid suffix
Precondition: $\mathrm{n}>0$ is an int."""

Useful String Methods

Method Result
 s.find(s1) Returns first position of s 1 in s ; -1 if not there.
 s.rfind(s1) Returns LAST position of s 1 in s ; -1 if not there.
 s.lower() Returns copy of s with all letters lower case
 s.upper() Returns copy of s with all letters upper case

- We will give you any methods you need
- But you must know how to slice strings!

What is on the Exam?

- String slicing functions (A1)
- Call frames and the call stack (A2)
- Very similar to A2 (see solution in CMS)
- May have to draw a full call stack
- See lectures 4 and 10 (for call stack)
- Functions on mutable objects (A3)
- Testing and debugging (Labs 6 and 10)
- Short Answer (Terminology)

Call Stack Example

- Given functions to right
- Function fname() is not important for problem
- Use the numbers given
- Execute the call: lname_first('John Doe')
- Draw entire call stack when helper function lname completes line 10
- Draw nothing else

1. def lname_first(s):
2. """Pre: s in the form
'first-name last-name' """
first $=$ fname(s)
last $=\operatorname{lname}(\mathrm{s})$
return last + ',' + first
3.
4. def lname(s):
"""Pre: same as above"""
end $=$ s.find(' ')
return s[end +1 :]

Example with a Mutable Object

l. def cycle_left(p):
2. """Cycle coords left
3. Pre: p a point"""
4. \quad temp $=p . x$
5. p. $x=p . y$
6. \quad p. $y=p . z$
7. p. $\mathrm{z}=$ temp

- May get a function on a mutable object
>>> p = Point3(1.0,2.0,3.0)
>>> cycle_left(p)
- You are not expected to come up w/ the "folder"
- Will provide it for you
- You just track changes
- Diagram all steps

Example with a Mutable Object

1. def cycle_left(p):
2. """Cycle coords left
3. Pre: p a point"""
4. \quad temp $=$ p. x
5. $p . x=p . y$
6. $\quad \mathrm{p} . \mathrm{y}=\mathrm{p} . \mathrm{z}$
7. p. $\mathrm{z}=$ temp
>>> p = Point3(1.0,2.0,3.0)
>>> cycle_left(p) Function Call

What is on the Exam?

- String slicing functions (A1)
- Call frames and the call stack (A2)
- Functions on mutable objects (A3)
- Given an object type (e.g. class)
- Attributes will have invariants
- Write a function respecting invariants
- Testing and debugging (Labs 6 and 10)
- Short Answer (Terminology)

Example from Assignment 3

- Class: RGB
- Constructor function: RGB(r,g,b)
- Remember constructor is just a function that gives us back a mutable object of that type
- Attributes:

Attribute	Invariant
red	int, within range $0 . .255$
green	int, within range $0 . .255$
blue	int, within range $0 . .255$

Function that Modifies Object

def lighten(rgb):

"""Lighten each attribute by 10\%
Attributes get lighter when they increase.
Parameter rgb: the color to lighten Precondition: rgb an RGB object""" pass \# implement me

Another Example

- Class: Length
- Constructor function: Length(ft,in)
- Remember constructor is just a function that gives us back a mutable object of that type
- Attributes:

Attribute	Invariant
feet	int, non-negative,$=12 \mathrm{in}$
inches	int, within range $0 . .11$

Function that Does Not Modify Object

def difference(lenl,lenえ):
"""Returns: Difference between lenl and lenح
Result is returned in inches
Parameter lenl: the first length
Precondition: lenl is a length object longer than lenz
Parameter len2: the second length
Precondition: len2 is a length object shorter than len1"""
pass \# implement me

What is on the Exam?

- String slicing functions (A1)
- Call frames and the call stack (A2)
- Functions on mutable objects (A3)
- Testing and debugging (Lab 6 and 10)
- Coming up with test cases
- Tracing program flow
- Understanding assert statements
- Short Answer (Terminology)

Picking Test Cases

def pigify(w):

"""Returns: copy of w converted to Pig Latin
' y ' is a vowel if it is not the first letter If word begins with a vowel, append 'hay' If word starts with 'q', assume followed by 'u'; move 'qu' to the end, and append 'ay' If word begins with a consonant, move all consonants up to first vowel to end and add 'ay'
Parameter w: the word to translate
Precondition: w contains only (lowercase) letters"""

Debugging Example

def replace_first(word,a,b):

"""Returns: a copy with FIRST instance of a replaced by b
Example: replace_first('crane','a','o') returns 'crone' Example: replace_first('poll','l','o') returns 'pool'
Parameter word: The string to copy and replace Precondition: word is a string
Parameter a: The substring to find in word
Precondition: a is a valid substring of word
Parameter b: The substring to use in place of a
Precondition: b is a string"""

Debugging Example

What is on the Exam?

- String slicing functions (A1)
- Call frames and the call stack (A2)
- Functions on mutable objects (A3)
- Testing and debugging (Labs 6 and 10)
- Short Answer (Terminology)
- See the study guide
- Look at the lecture slides
- Read relevant book chapters

Open to Questions

