
CS 1110 Final Exam Solutions, May 2023

1. [12 points] Strings. Implement the following function. Do not use iteration in your solution.

def happify(s):

"""

Returns a new string, that is the "happy version" of `s`

the happy version is a copy of `s` with the following changes:

1. the second word is replaced with the string `LOVE`

2. the last character of the third word is replicated twice

(this character can be a letter or punctuation)

3. if it doesn't already, the string should end in an exclamation point

Examples:

happify('i like you lots!') returns 'i LOVE youuu lots!'

happify('i like you. lots') returns 'i LOVE you... lots!'

happify('I hate taking exams.') returns 'I LOVE takinggg exams.!'

happify('a e i o!') returns 'a LOVE iii o!'

Preconditions:

`s` is a string of at least four words separated by spaces

the only whitespaces in `s` are single spaces (' ')

"""

STUDENTS: assume preconditions are met. No need to assert them.

if s[-1] != '!':

s = s + "!" # take care of change 3 up front

Solution with split & join

slist = s.split(" ")

slist[1] = 'LOVE'

dup = slist[2][-1]

slist[2] = slist[2]+dup+dup

result = " ".join(slist)

return result

Solution with index and cocatenation

space1 = s.index(" ")

space2 = s.index(" ",space1+1)

space3 = s.index(" ",space2+1)

dup = s[space3-1]

result = s[0:space1+1] + "LOVE" + s[space2:space3]+dup+dup+s[space3:]

return result

2. [12 points] Dictionaries. Implement this function according to its specification using any
(and only) tools you learned in CS 1110.

def merge_dict(input_dict):

""" Given an `input_dict` with the following properties:

- keys are strings of repeating letters ('aaa' or 'bbbbbbbbbbb')

- values are ints

Returns: a new dictionary that is the merged version of the input_dict:

- the keys are the 1 character version of input_dict's keys

- the values are the combined values across all merged entries,

weighted by the number of characters in the original key

EXAMPLES:

{'a': 6, 'aa': 5, 'aaa': 4} → {'a':28}

1 x 6 + 2 x 5 + 3 x 4 =28

{'bb':6 , 'aa': 5, 'aaa': 4} → {'b':12, 'a':22}

2 x 6 =12

2 x 5 + 3 x 4 =22

{'a': 2, 'b': 2, 'c': 3} → {'a': 2, 'b': 2, 'c': 3}

{'zzzzzzz': 1} → {'z': 7}

{} → {}

Precondition: input_dict is a possibly empty dictionary that will only have:

- strings of repeating lower case characters (a-z) as keys

- ints as values

"""

STUDENTS: assume preconditions are met. No need to assert them.

newdict = {}

for key in input_dict: # or input_dict.keys() (see reference sheet)

merged_key = key[0]

val = input_dict[key]

new_val = val * len(key)

if merged_key not in newdict:

newdict[merged_key] = new_val

else:

newdict[merged_key] += new_val

return newdict

Page 2

3. [10 points] Visualizing Inheritance. For this question, you will be shown the state of mem-
ory before a single assignment statement is executed. Modify the drawing to show how memory
changes after that single assignment statement has been executed. If at any point an error is
thrown, please write ERROR next to the assignment statement; only draw the changes to
memory that would occur before the error occurs.

Each part is independent.
Notice: there is no Call Stack.
To the right is an example:

Page 3

Page 4

4. [7 points] Visualizing Methods. For this question, you will be shown the state of memory
before a single Python statement is executed. Modify the drawing to show how memory changes
after that single statement has been executed. If at any point an error is thrown, please write
ERROR next to the assignment statement; only draw the changes to memory that would
occur before the error occurs. Do not worry about changing the Program Counter in the top
right corner of the call frame. (Since we are not showing you the code, you can’t know what
the next line of executable code will be). Once again, each part is independent. Notice that
there is a call stack: each line being executed exists inside a method.

Page 5

5. [16 points] Recursion. Let Person be a class as defined below:

class Person:

"""An instance represents a person who may or may not be CPR certified.

(CPR certification is useful during a medical emergency.)

Instance attributes:

name [str] - unique non-empty name of a person

cert [bool] - whether the person is CPR certified or not

ec1 [Person or None] - emergency contact 1

ec2 [Person or None] - emergency contact 2

"""

def __init__(self, name, cert=False, c1=None, c2=None):

"""Create new Person with a name, CPR certification status, and

up to 2 emergency contacts"""

self.name = name

self.cert = cert

self.ec1 = c1

self.ec2 = c2

Question begins on the next page.

Page 6

(Continued from previous page.)

Implement the the Person class’ instance method can help, making effective use of recursion.

def can_help(self):

"""Returns: True if the person has someone who is CPR certified in

their emergency contact network. This means either they or someone

they can reach through their emergency contacts are CPR certified.

Otherwise returns False.

Examples:

p1 = Person("BoA", False) p6:Irene-F

p2 = Person("Ailee", True) / \

p3 = Person("Jisoo", False, p1, p2) p4:HyunA-F p5:Tzuyu-F

p4 = Person("HyunA", False, p3) /

p5 = Person("Tzuyu", False) p3:Jisoo-F

p6 = Person("Irene", False, p4, p5) / \

p1:BoA-F p2:Ailee-T

^^ certified!

===IMPORTANT===

p1.can_help() and p5.can_help() return False; they have

no emergency contacts and are not themselves CPR certified

p2.can_help(), p3.can_help(), p4.can_help(), p6.can_help() all

Return True because they or someone they can reach via their

emergency contacts are CPR certified

"""

STUDENTS: assume all Person objects are well formed with attributes

as described above

if self.cert:

return True

c1 = False

c2 = False

if self.ec1 is not None:

c1 = self.ec1.can_help()

if self.ec2 is not None:

c2 = self.ec2.can_help()

return c1 or c2

Page 7

1 class Course:

2 def __init__(self, name, n_credit):

3 """

4 Precondition: name is unique string identifier

5 n_credit is an int

6 """

7 self.name = name

8 self.n_credit = n_credit

9

10 class Student:

11 max_credit = 20

12

13 def __init__(self, netID, courses):

14 """

15 Precondition: netID is unique string identifier

16 courses is a list of Course

17 """

18 self.netID = netID

19 self.courses = courses

20 # Add up credits

21 for one_course in self.courses:

22 self.n_credit += one_course.n_credit

23

24 def enroll(self, new_course):

25 """

26 Precondition: new_course is a Course

27 """

28 if new_course.n_credit + self.n_credit <= self.maxcredit:

29 self.courses.append(new_course)

30 self.n_credit += new_course.n_credit

31

32 def drop(self, course_name):

33 """

34 Precondition: course_name is the name of the course to drop

35 """

36 for one_course in self.courses:

37 if one_course.name == course_name:

38 self.n_credit -= one_course.n_credit

39 self.courses.remove(one_course)

40

41 c1 = Course("CS 1110", 4)

42 c2 = Course("HADM 1810", 3)

43 s1 = Student("mep1", [c1]) # enroll in first course

44 s1.enroll(c2) # enroll in second course

45 assert len(s1.courses) == 2

46 s1.drop(c1) # drop a course

47 assert len(s1.courses) == 1 # should be down to 1 course...

Page 8

6. Debugging. On the previous page is the code for two new classes and 7 lines of code that use
them. Keep in mind that specifications are always correct and should not be changed.

When the given code is run in Python, the following error is reported:

Traceback (most recent call last):

File "college.py", line 43, in <module>

s1 = Student("mep1", [c1]) # enroll in first course

File "college.py", line 22, in __init__

self.n_credit += one_course.n_credit

AttributeError: 'Student' object has no attribute 'n_credit'

(a) [2 points] Fix the code to remove only the above error. Fix only the problem that
directly causes the above error message. Mark your fix(es) with the label FIX1.

Before the for loop in line 13, need to add the line self.n credit = 0

Now that you have fixed the error, you rerun the code and now a new error is reported:

Traceback (most recent call last):

File "college.py", line 44, in <module>

s1.enroll(c2) # enroll in second course

File "college.py", line 28, in enroll

if new_course.n_credit + self.n_credit <= self.maxcredit:

AttributeError: 'Student' object has no attribute 'maxcredit'

(b) [2 points] Fix the code to remove only this new error. Fix only the problem that
directly causes to the new error message. Mark your fix(es) with the label FIX2.

Line 17 has a typo, should read self.max credit not self.maxcredit

Now that you have fixed the error, you rerun the code and now a new error is reported:

Traceback (most recent call last):

File "college.py", line 47, in <module>

assert len(s1.courses) == 1 # should be down to 1 course...

AssertionError

(c) [2 points] Is there a bug in the drop method?

Circle One: Yes No

(d) [2 points] If you answered No, explain what the problem is. If you answered Yes, fix the
bug. Label this as FIX3.

No, the problem is that the precondition is violated! drop is being called with a course,
not a course name. (So there won’t be a name match, so the course will not be dropped.)

Page 9

7. Classes and Subclasses. Here are two classes FoodItem and Cart.

class FoodItem:

"""

Represents some food available for sale at a store.

Instance attributes:

name (str): name of the food item

weight (float): how much the food weighs (in pounds); based on how

much of the item there is.

price (float): how much the food costs

flat_price (bool): indicates whether the price is the total price

for the food item (if True) or the price per pound (if False).

"""

def __init__(self, name, weight, price, flat_price=True):

self.name = name

self.weight = weight

self.price = price

self.flat_price = flat_price

class Cart:

"""

Represents a shopping cart which holds food items.

Instance attributes:

contents (list of FoodItem): (possibly empty) list of all FoodItems

in the cart.

"""

def __init__(self):

self.contents = []

Question begins on the next page.

Page 10

(Continued from previous page.)

(a) [5 points] Implement the add item method of class Cart so that it meets its specification.
def add_item(self, name, weight, price, flat_price=True):

"""This function makes a new FoodItem object (with name `name`,

weight `weight`, price `price`, and flat_price `flat_price`) then

adds the new FoodItem to the contents of the cart.

Parameters:

`name`: name of the FoodItem being created/added

`weight`: the weight of the FoodItem being created/added

`price`: the price of the FoodItem being created/added

`flat_price`: flat_price value for the FoodItem

"""

item = FoodItem(name, weight, price, flat_price)

self.contents.append(item)

(b) [9 points] Implement the calculate total method of class Cart so that it meets its specification.
def calculate_total(self):

"""

Calculates the total cost to purchase all food items in the cart.

The total should correctly account for the price of all items,

including calculating the cost based on the weight of food items

as necessary.

Returns: the total cost (as a float; doesn't need to be rounded)

"""

total = 0

for item in self.contents:

if item.flat_price:

total += item.price

else:

total += (item.price * item.weight)

return total

Page 11

(Continued from previous page.)
Consider a subclass of Cart called MembersCart, which offers discounts to those who have pur-
chased a store membership.

class MembersCart(Cart):

""" Represents a shopping cart belonging to a customer who is a member,

and has a corresponding membership discount rate on all items. """

discount = 0.10 # membership discount rate

(c) [8 points] Implement class MembersCart’s calculate total method so that it meets specification.

def calculate_total(self):

"""

Calculates the total cost to purchase all food items in the cart.

The total should correctly account for the price of all items,

including calculating the cost based on the weight of food items

as necessary.

Additionally, apply the membership discount rate to adjust the total

cost. (ie: if the discount is 0.25, the total should be 25% less)

Returns: the discounted total cost (as a float; no rounding needed)

"""

Call super to calculate total

total = super().calculate_total()

total = total * (1-MembersCart.discount)

return total

(d) [2 points] Will your calculate total method work correctly, even though the MembersCart class
does not have its own init method?

Circle One: Yes No

(e) [2 points] Explain.
Yes. First, it’s fine for a class to not have an init method. In this particular instance, all the
instance attributes that MembersCart needs are correctly initialized by the parent class’ init

method, which will be called by the constructor since MembersCart does not have its own.

Page 12

8. [12 points] While loops. Implement this function, using a while-loop. Do not use break.

def filter_and_sum(mylist, n):

"""Returns the sum of the elements in a list. This function

stops adding the elements when the nth zero is reached.

Examples:

filter_and_sum([1,0,2,3,0,4,0,5], 1) returns 1

(1 then stops when it encounters the 1st 0 @ index 1)

filter_and_sum([1,0,2,3,0,4,0,5], 2) returns 6

(1+2+3 then stops when it encounters the 2nd 0 @ index 4)

filter_and_sum([1,0,2,3,0,4,0,5], 4) returns 15

(1+2+3+4+5 reaches the end of the list, never sees 4 0s)

filter_and_sum([], 3) returns 0

filter_and_sum([0], 1) returns 0

Preconditions:

mylist: a (possibly empty) list of integers

n: an int, value >= 1

"""

result = 0

n_seen = 0

i = 0

while (n_seen < n and i < len(mylist)):

result += mylist[i]

if mylist[i] == 0:

n_seen += 1

i += 1

return result

Page 13

9. For each question, provide only one answer. If you provide 2, we will only grade the first.

(a) [2 points] Which of the following statements about types in Python is true?

(A) Python will never automatically convert a value from a narrower type to a wider type.
For example, from an int to an float.

(B) An operator (like +), has the same meaning regardless of the types of the values it
operates on.

(C) Once a variable has a value of a certain type, it can only ever have a value of that
type assigned to it.

(D) A class is a user-defined type.

(E) Variables have types.

Correct Answer: D

(b) [2 points] Which of the following statements about testing and debugging is true?

(A) A programmer should first make their code efficient and then test it for correctness.

(B) Using print statements is a good way to find syntax errors in your code.

(C) A good test suite will include test cases that violate the precondition.

(D) Using print statements after if expressions is a good way to examine program flow.

(E) A good test suite includes a test case for each possible input length.

Correct Answer: D

(c) [2 points] Which of the following statements about equality and identity is true?

(A) The == operator should compare identity; the is operator should compare equality.

(B) When used to compare two instances of a newly-defined class that has no overwritten
version of the special method eq , the == operator will compare identity.

(C) The isinstance method can be used interchangeably with the type method.

(D) The is operator invokes the eq method.

(E) The == operator invokes the isinstance method.

Correct Answer: B

(d) [2 points] Which of the following statements about Linear Search is true?

(A) Linear Search is faster than Binary Search.

(B) With each step of Linear Search, you can rule out half of the search space.

(C) It’s always better to sort your list so you can use Binary Search over Linear Search.

(D) In Linear Search, doubling the list size quadruples the expected time of the search.

(E) Linear Search works on any list, sorted or not.

(F) Binary Search’s complexity is on the order of n2.

Correct Answer: E

Page 14

In class we looked at insertion sort and merge sort. Here is the implementation of a
third sorting algorithm, called selection sort:

def selection_sort(mylist):

"""Sorts a list of integers by repeatedly looking for the smallest integer

from the unsorted part of the list (on the right) and swapping it with the

integer at the beginning of the unsorted part. The sorted part of the list

keeps growing until all of mylist is sorted.

"""

n = len(mylist)

for i in range(n):

Find the smallest element in the unsorted part of mylist

min_idx = i

for j in range(i+1, n):

if mylist[j] < mylist[min_idx]:

min_idx = j

swaps values of mylist[i] and mylist[min_idx]

swap(mylist, i, min_idx)

(e) [2 points] If the size of the list that needs to sorted were to double, how would the work
performed by selection sort change?

(A) The work would double, just like it does for insertion sort.

(B) The work would a little more than double, just like it does for insertion sort.

(C) The work would quadruple, just like it does for insertion sort.

(D) The work would double, just like it does for merge sort.

(E) The work would a little more than double, just like it does for merge sort.

(F) The work would quadruple, just like it does for merge sort.

Correct Answer: C

(f) [2 points] How would you describe the space requirements of selection sort?

(A) Like insertion sort, selection sort sorts the list in place, so the space require-
ments are not costly.

(B) Like merge sort, selection sort sorts the list in place, so the space requirements
are not costly.

(C) Like insertion sort, selection sort requires that you make many temporary, new
lists, so the space requirements are costly.

(D) Like merge sort, selection sort requires that you make many temporary, new lists,
so the space requirements are costly.

Correct Answer: A

Page 15

