Algorithms for Search and Sort

• Moving beyond correctness!
• Our approach:
 ▪ review programming constructs (while loop) and analysis
 ▪ no built-in methods such as index, insert, sort, etc.
• Today we’ll discuss
 ▪ Linear search
 ▪ Binary search
 ▪ Insertion sort
• More on sorting next lecture
• More on the topic in next course, CS 2110!

Searching for an item in a collection

Is the collection organized? What is the organizing scheme?

Searching in a List

• Search for a target \(x \) in a list \(v \)
• Start at index 0, keep checking until you find it

\[
\begin{array}{llllll}
0 & 1 & \ldots & k & \ldots
\end{array}
\]

\[
\begin{array}{llllll}
v & 12 & 35 & 33 & 15 & 42
\end{array}
\]

\[
\begin{array}{llllll}
x & \text{33}
\end{array}
\]
Searching in a List (Q)

- Search for a target \(x \) in a list \(v \)
- Start at index 0, keep checking until you find it or until no more element to check

Suppose another list is twice as long as \(v \). The expected "effort" required to do a linear search is

<table>
<thead>
<tr>
<th>Option</th>
<th>Effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Squared</td>
<td>(n^2)</td>
</tr>
<tr>
<td>B. Doubled</td>
<td>(2n)</td>
</tr>
<tr>
<td>C. The same</td>
<td>(n)</td>
</tr>
<tr>
<td>D. Halved</td>
<td>(\frac{n}{2})</td>
</tr>
<tr>
<td>E. I don't know</td>
<td>(n)</td>
</tr>
</tbody>
</table>

Effort is linearly proportional to list size. Needs \(n \) comparisons for list of size \(n \) (at worst case).

Searching in a List (A)

- Search for a target \(x \) in a list \(v \)
- Start at index 0, keep checking until you find it or until no more element to check

Suppose another list is twice as long as \(v \). The expected "effort" required to do a linear search is

<table>
<thead>
<tr>
<th>Option</th>
<th>Effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Squared</td>
<td>(n^2)</td>
</tr>
<tr>
<td>B. Doubled</td>
<td>(2n)</td>
</tr>
<tr>
<td>C. The same</td>
<td>(n)</td>
</tr>
<tr>
<td>D. Halved</td>
<td>(\frac{n}{2})</td>
</tr>
<tr>
<td>E. I don't know</td>
<td>(n)</td>
</tr>
</tbody>
</table>

Effort is linearly proportional to list size. Needs \(n \) comparisons for list of size \(n \) (at worst case).

Search Algorithms

- Search for a target \(x \) in a list \(v \)
- Start at index 0, keep checking until you find it or until no more elements to check

To find the word “Tierartz” in my German dictionary...

- Open to the middle page
- If last word of 1st half comes before Tierartz: Rip* and throw away the 1st half
- Else: Rip* and throw away the 2nd half

* For dramatic effect only--don’t actually rip your dictionary! Just pretend that the part is gone.

Repeated halving of “search window”

- Original: 3000 pages
- After 1 halving: 1500 pages
- After 2 halvings: 750 pages
- After 3 halvings: 375 pages
- After 4 halvings: 188 pages
- After 5 halvings: 94 pages
- After 6 halvings: 47 pages
- After 12 halvings: 1 page

Binary Search

- Repeatedly halve the “search window”
- An item in a sorted list of length \(n \) can be located with just \(\log_2 n \) comparisons.
- “Savings” is significant!
Binary Search: target \(x = 70 \)

<table>
<thead>
<tr>
<th>(v)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>15</td>
<td>33</td>
<td>35</td>
<td>42</td>
<td>45</td>
<td>51</td>
<td>62</td>
<td>73</td>
<td>75</td>
<td>86</td>
<td>98</td>
</tr>
</tbody>
</table>

\(i \) 0, \(j \) 11, \(v[\text{mid}] \) is not \(x \)
\(v[\text{mid}] < x \)
So throw away the left half...

<table>
<thead>
<tr>
<th>(v)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>15</td>
<td>33</td>
<td>35</td>
<td>42</td>
<td>45</td>
<td>51</td>
<td>62</td>
<td>73</td>
<td>75</td>
<td>86</td>
<td>98</td>
</tr>
</tbody>
</table>

\(i \) 5, \(j \) 11
\(v[\text{mid}] < x \)
So throw away the right half...

<table>
<thead>
<tr>
<th>(v)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>15</td>
<td>33</td>
<td>35</td>
<td>42</td>
<td>45</td>
<td>51</td>
<td>62</td>
<td>73</td>
<td>75</td>
<td>86</td>
<td>98</td>
</tr>
</tbody>
</table>

\(i \) 6, \(j \) 11, \(v[\text{mid}] \) is not \(x \)
\(v[\text{mid}] < x \)
So throw away the right half...

<table>
<thead>
<tr>
<th>(v)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>15</td>
<td>33</td>
<td>35</td>
<td>42</td>
<td>45</td>
<td>51</td>
<td>62</td>
<td>73</td>
<td>75</td>
<td>86</td>
<td>98</td>
</tr>
</tbody>
</table>

\(i \) 7, \(j \) 7
\(v[\text{mid}] < x \)
So throw away the left half...

<table>
<thead>
<tr>
<th>(v)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>15</td>
<td>33</td>
<td>35</td>
<td>42</td>
<td>45</td>
<td>51</td>
<td>62</td>
<td>73</td>
<td>75</td>
<td>86</td>
<td>98</td>
</tr>
</tbody>
</table>

\(i \) 7, \(j \) 7
\(v[\text{mid}] < x \)
So throw away the left half...

<table>
<thead>
<tr>
<th>(v)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>15</td>
<td>33</td>
<td>35</td>
<td>42</td>
<td>45</td>
<td>51</td>
<td>62</td>
<td>73</td>
<td>75</td>
<td>86</td>
<td>98</td>
</tr>
</tbody>
</table>

\(i \) 8, \(j \) 7
\(i \) is greater than \(j \)
\(\rightarrow \) Not a valid search window

Binary search is efficient, but we need to sort the vector in the first place so that we can use binary search

- Many sorting algorithms out there...
- We look at insertion sort now
- Next lecture we’ll look at merge sort and do some analysis
The Insertion Process

- Given a sorted list \(x \), insert a number \(y \) such that the result is sorted.
- Sorted: arranged in ascending (small to big) order.

We’ll call this process a “push down,” as in push a value down until it is in its sorted position.
Sort list \(b \) using Insertion Sort (1)

Need to start with a sorted segment. How do you find one?

\[b \begin{array}{cccccc} 0 & 1 & 2 & 3 & 4 & 5 \end{array} \]

See insertion_sort()
Helper functions make clear the algorithm

```python
def swap(b, h, k):
    :
def push_down(b, k):
    while k > 0 and b[k-1] > b[k]:
        swap(b, k-1, k)
    k= k-1
def insertion_sort(b):
    for i in range(1,len(b)):
        push_down(b, i)
```

Algorithm Complexity

- Count the number of comparisons needed
- In the worst case, need i comparisons to push down an element in a sorted segment with i elements.

How much work is a push down?

- This push down takes 2 comparisons

<table>
<thead>
<tr>
<th>push down a “big” value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 6 9 8</td>
</tr>
</tbody>
</table>

| 2 3 6 8 9 |

<table>
<thead>
<tr>
<th>push down a “small” value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 6 9 1</td>
</tr>
</tbody>
</table>

| 2 3 6 1 9 |

| 2 3 6 9 |
| 1 6 9 |
| 1 6 9 |
| 1 6 9 |

Algorithm Complexity (Q)

Count (approximately) the number of comparisons needed to sort a list of length n

```python
def swap(b, h, k):
    :
def push_down(b, k):
    while k > 0 and b[k-1] > b[k]:
        swap(b, k-1, k)
    k= k-1
def insertion_sort(b):
    for i in range(1,len(b)):
        push_down(b, i)
```

Algorithm Complexity (A)

- Count the number of comparisons needed
- In the worst case, need i comparisons to push down an element in a sorted segment with i elements.
- For a list of length n
 - 1st push down: 1 comparison
 - 2nd push down: 2 comparisons (worst case)
 - $\sum_{k=1}^{n-1} k = \frac{n(n-1)}{2}$, say, n^2 for big n

Complexity of algorithms discussed

- Linear search: on the order of n
- Binary search: on the order of $\log_2 n$
 - Binary search is faster but requires sorted data
- Insertion sort: on the order of n^2

For fun, check out this visualization: https://www.youtube.com/watch?v=xcep5GrC8c