Announcements

e Remember:

Lecture 22:

= When you call a class method, call it via the

Algorithms for Sorting and object
. e (We're seeing a lot of ppl calling it via the class name)
Sea rCh I ng the test cases won't catch this, but this is a
style/concept issue
CS 1110 _
))) cl = Circle(1,2,3)
Introduction to Computing Using Python c1.draw()
NOT
[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White] Circle. draW(C1) 3
Algorithms for Search and Sort Searching for an item in a collection

« Moving beyond correctness! Is the collection organized? What is the organizing scheme?

e Our approach:
= review programming constructs (while loop) and analysis
= no built-in methods such as index, insert, sort, etc.

e Today we’ll discuss
= Linear search
= Binary search
® |nsertion sort

Indiana Jones and the Raiders of the Lost Ark

e More on sorting next lecture
e More on the topic in next course, CS 2110!

Searching in a List Searching in a List
e Search for atarget xina e Search for atarget xina
list v list v
e Start at index 0, keep e Start at index 0, keep
checking until you find it checking until you find it
or until no more element
to check
0 1 R 0 1 . Ko
v|12[35[33[15]42] v|12[35[33[15[42]

x x
Linear search

6 See search.py |7

Searching in a List (Q)

o Search for atarget x ina Suppose another list is twice as
list v long as v. The expected “effort”

. required to do a linear search is
e Start atindex O, keep

checking until you find it A Squared
or until no more element B. Doubled
to check C. Thesame
0 1 N D. Halved
v[12]35[33]15[42]| |e dontknow

x
Linear search

See search.py |8

Search Algorithms

e Search for atarget xina | ¢ Search for atarget xina
list v sorted list v

e Start at index 0, keep
checking until you find it

or until no more elements
to check

vl12[15[33]35[42]

vl12[35[33[15[42]
2] g

Binary search

Linear search

10

Repeated halving of “search window”

Original: 3000 pages
After 1 halving: 1500 pages
After 2 halvings: 750 pages
After 3 halvings: 375 pages
After 4 halvings: 188 pages
After 5 halvings: 94 pages

After 12 halvings: 1 page

Searching in a List (A)

o Search for atarget x ina Suppose another list is twice as
list v long as v. The expected “effort”

. required to do a linear search is
e Start at index 0, keep

hecking until find i
checking until you find it A Squared
or until no more element |5 noipled CORRECT
to check C. Thesame
0 1 N D. Halved
v[12]35]33[15[42] & 1dontknow

<[

. Effort is linearly proportional to
Linear search

list size. Needs n comparisons
a . 9
for list of size n (at worst case).

How do you search for a word in a dictionary?
(NOT linear search)

To find the word “Tierartz” in my German dictionary...

while dictionary is longer than 1 page:
open to the middle page
if last word of 1st half comes before Tierartz:
Rip* and throw away the 1st half
else:
Rip* and throw away the 2" half

;-

Die deutsche
Rechtschreibung

* For dramatic effect only--don’t actually rip your
dictionary! Just pretend that the part is gone.

Binary Search

* Repeatedly halve the “search window”

e Anitem in a sorted list of length n can be
located with just log, n comparisons.

e “Savings” is significant!

n log2(n)
100 7
1000 10
10000 13

13

Binary Search: target x = 70

@ 1 2 3 4 56 7 8 9 1o 11
v[12[15[33[35[42[45[51[62[73[75] 86| o8]

1 1 1
i mid b
i v[mid] is not x
id] <
mid v[mid] X
j

So throw away the left
half... "

Binary Search: target x = 70

@ 1 2 3 4 5 6 7 8 9 1o 11

v[12[15[33[35[42]45[52]62] 73| 7586 o8]
11
mid j

v[mid] is not x
vimid] < x

So throw away the left
half... 16

Binary Search: target x = 70

@ 1 2 3 4 56 7 8 9 1o 11
v[12[15[33[35[42[45[51[62[73[75] 86|08

i[s]
mid
i [7]

DONE because
i is greater than j
- Not a valid search window

Binary Search: target x = 70

@ 1 2 3 4 56 7 8 9 10 11
v[12[15[33[35[424s[s52]62|73|75] 86| o8]

r 1 L]
i E v[mid] is not x
X < v[mid]

mid
]

So throw away the right
half... 15

Binary Search: target x = 70

@ 1 2 3 4 5 6 7 8 9 1o 11
v[12[15[33[35[42[45[51[62]73[758608
L |
imid
v[mid] is not x
vimid] < x

i [
mid
i [7]

So throw away the left half...

Binary search is efficient, but we need to sort
the vector in the first place so that we can
use binary search

e Many sorting algorithms out there...
* We look at insertion sort now

e Next lecture we’ll look at merge sort and do
some analysis

The Insertion Process Push Down sorted Push down 8 (b[4]) into the

- b ..HHE sorted segment b[0..3]
2|3
e Given a sorted list x, insert a number y such that one push

0 12 3 4

the result is sorted down o[z [s 5] teseovarc e

The notation
b[h..k] means

e Sorted: arranged in ascending (small to big) order ?'Zf“e”;s -
sorted indices
| ,/‘ through k of
Hn listb,i.e.,

including k

ERERE

‘ We'll call this process a “push down,” as in push a
value down until it is in its sorted position 0 2

Push Down Push Down

=[=[<]- =[=[<]-
HEd o HEd o

sorted Push down 4 into the

sorted segment :
ﬂﬂnu ﬂﬂu Compare adjacent components:
swap 9 &

Push Down Push Down

JHHE
JBH O JBH O
22 [ofa]s] 22 [ofa]s]

2 ﬂﬂun Compare adjacent components: . ﬂﬂn
swap 8 &
JBoR B

JHHE

Compare adjacent components:
swap 6 &

Push Down

2[3]s]s]
one push
down

2o ez o]
aabl

one push
wn LI
an O

“

See push_down() ininsertion_sort.py ‘

Sort list b using Insertion Sort (2)

Compare adjacent components:
DONE! No more swaps.

Sort list b using Insertion Sort (1)

Need to start with a sorted segment. How do you find one?

012345
b

Length | segment is sorted
push_down(b, 1)

See insertion_sort() ‘

Sort list b using Insertion Sort (4)

Need to start with a sorted segment. How do you find one?
Q12345
b

See insertion_sort() ‘ »

Sort list b using Insertion Sort (3)

Need to start with a sorted segment. How do you find one?

012345
b

Length | segment is sorted

push_down(b, 1) Then sorted segment has length 2
push_down(b, 2) Then sorted segment has length 3
push_down(b, 3)

See insertion_sort() ‘

Need to start with a sorted segment. How do you find one?
Q12345
b

Length | segment is sorted
push_down(b, 1) Then sorted segment has length 2
push_down(b, 2)

See insertion_sort() ‘ 0

Sort list b using Insertion Sort (rest)

Need to start with a sorted segment. How do you find one?
Q12345
b

Length | segment is sorted

push_down(b, 1) Then sorted segment has length 2
push_down(b, 2) Then sorted segment has length 3
push_down(b, 3) Then sorted segment has length 4
push_down(b, 4) Then sorted segment has length 5
push_down(b, 5) Then entire list is sorted

[For a list of length n, call push_down n-1 times.]

See insertion_sort() ‘ »

Helper functions make clear the algorithm

Algorithm Complexity

def swap(b, h, k):

def ﬁush_down(b, k):

while k > @ and b[k-1] > b[k]:

swap(b, k-1, k)

k= k-1

V.

def insertion_sort(b):

for i in range(1,len(b)):

push_down(b, i)

e Count the number of comparisons needed
¢ In the worst case, need i comparisons to push

w

Difficult to understand!|

def insertion_sort(b):

for i in range(1,len(b)):

k= 1i
while (k > @ and

down an element in a sorted segment with i
elements.

b[k-1] > b[k]) :

temp= b[k-1]
b[k-1]= b[k]
b[k]= temp
k= k-1

How much work is a push down?

push down |

a ubigu

value

push down

a “smal
value

|u

2o [:]s]
il o

[«
3

1

2
2

ad Of

1

2

3

=~

H

This push down takes
2 comparisons

This push down takes
4 comparisons.
Worst case scenario:
n comparisons
needed to push down
into a length n sorted
segment.

Algorithm Complexity (A)

34 3

Algorithm Complexity (Q)

Count (approximately) the number of comparisons
needed to sort a list of length n

def swap(b, h, k):
def push_down(b, k):
while k > @ an A. ~ 1 comparison
swap(b, k-1,7K B. ~ncomparisons
k= k-1 C. ~n?comparisons
. . D. ~ n3comparisons
def insertion_sort(b):
L. E. ldon’t know
for i in range(1,len(b)):
% push_down(b, i) 37

Complexity of algorithms discussed

e Count the number of comparisons needed

¢ In the worst case, need i comparisons to push
down an element in a sorted segment with i

elements.

e For alist of length n
= 15t push down: 1 comparison
= 2nd pysh down: 2 comparisons (worst case)

= 14+2+..+ (n-1) = n*(n-1)/2 , say, n? for big n

e For fun, check out this visualization:
https://www.youtube.com/watch?v=xxcpvCGrCBc

e Linear search: on the order of n

e Binary search: on the order of log, n
= Binary search is faster but requires sorted data

e Insertion sort: on the order of n?

