
Lecture 22:
Algorithms for Sorting and

Searching

CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2022sp Announcements

• Remember:
§ When you call a class method, call it via the

object
• (We're seeing a lot of ppl calling it via the class name)

the test cases won't catch this, but this is a
style/concept issue

c1 = Circle(1,2,3)
c1.draw()
NOT
Circle.draw(c1) 3

Algorithms for Search and Sort

• Moving beyond correctness!

• Our approach:

§ review programming constructs (while loop) and analysis
§ no built-in methods such as index, insert, sort, etc.

• Today we’ll discuss

§ Linear search

§ Binary search

§ Insertion sort

• More on sorting next lecture

• More on the topic in next course, CS 2110!
4 5

Searching for an item in a collection

Is the collection organized? What is the organizing scheme?

In
di

an
a

Jo
ne

s
an

d
th

e
Ra

id
er

s
of

 t
he

 L
os

t A
rk

Searching in a List

• Search for a target x in a

list v
• Start at index 0, keep

checking until you find it

6

12 1535 33 42v
x 33

0 1 … k …

Searching in a List

• Search for a target x in a

list v
• Start at index 0, keep

checking until you find it

or until no more element
to check

7

12 1535 33 42v
x 3514

Linear search
See search.py

0 1 … k …

Searching in a List (Q)

• Search for a target x in a

list v
• Start at index 0, keep

checking until you find it

or until no more element
to check

Suppose another list is twice as
long as v. The expected “effort”
required to do a linear search is

A. Squared
B. Doubled
C. The same
D. Halved
E. I don’t know

8

12 1535 33 42v
x 3514

Linear search

0 1 … k …

See search.py

Searching in a List (A)

• Search for a target x in a

list v
• Start at index 0, keep

checking until you find it

or until no more element
to check

Suppose another list is twice as
long as v. The expected “effort”
required to do a linear search is

A. Squared
B. Doubled
C. The same
D. Halved
E. I don’t know

Effort is linearly proportional to
list size. Needs n comparisons
for list of size n (at worst case). 9

12 1535 33 42v
x 3514

Linear search

CORRECT

0 1 … k …

Search Algorithms

• Search for a target x in a

list v
• Start at index 0, keep

checking until you find it

or until no more elements
to check

• Search for a target x in a

sorted list v

10

12 1535 33 42v
x 35

12 3515 33 42v
x 1414

Searching in

a sorted list should

require less work!

Linear search Binary search
11

How do you search for a word in a dictionary?
(NOT linear search)

To find the word “Tierartz” in my German dictionary…

while dictionary is longer than 1 page:

open to the middle page

if last word of 1st half comes before Tierartz:
Rip* and throw away the 1st half

else:

Rip* and throw away the 2nd half

* For dramatic effect only--don’t actually rip your
dictionary! Just pretend that the part is gone.

12

Repeated halving of “search window”

Original: 3000 pages
After 1 halving: 1500 pages
After 2 halvings: 750 pages
After 3 halvings: 375 pages
After 4 halvings: 188 pages
After 5 halvings: 94 pages

:
After 12 halvings: 1 page

Binary Search

• Repeatedly halve the “search window”
• An item in a sorted list of length n can be

located with just log2 n comparisons.
• “Savings” is significant!

13

n log2(n)

100 7

1000 10

10000 13

14

12 15 3533 42 45 51 7362 75 86 98v

i

mid

j

0

5

11

0 1 2 3 4 5 6 7 8 9 10 11

v[mid] is not x
v[mid] < x

So throw away the left
half…

Binary Search: target x = 70

i jmid

15

12 15 3533 42 45 51 7362 75 86 98v

6

8

11

v[mid] is not x
x < v[mid]

So throw away the right
half…

Binary Search: target x = 70

0 1 2 3 4 5 6 7 8 9 10 11

i jmid

i

mid

j

16

12 15 3533 42 45 51 7362 75 86 98v

6

6

7

v[mid] is not x
v[mid] < x

So throw away the left
half…

Binary Search: target x = 70

0 1 2 3 4 5 6 7 8 9 10 11

i

mid

j

i jmid

17

12 15 3533 42 45 51 7362 75 86 98v

7

7

7

v[mid] is not x
v[mid] < x

So throw away the left half…

Binary Search: target x = 70

0 1 2 3 4 5 6 7 8 9 10 11

i

mid

j

i jmid

18

12 15 3533 42 45 51 7362 75 86 98v

8

7

7

DONE because

i is greater than j

à Not a valid search window

Binary Search: target x = 70

0 1 2 3 4 5 6 7 8 9 10 11

i

mid

j
19

Binary search is efficient, but we need to sort
the vector in the first place so that we can

use binary search

• Many sorting algorithms out there...

• We look at insertion sort now

• Next lecture we’ll look at merge sort and do
some analysis

20

The Insertion Process

• Given a sorted list x, insert a number y such that
the result is sorted

• Sorted: arranged in ascending (small to big) order

2 3 6 98

2 3 6 9 8

sorted

We’ll call this process a “push down,” as in push a
value down until it is in its sorted position 21

2 3 6 9 8

2 3 6 98 Just swap 8 & 9

Push Down sorted

one push
down

Push down 8 (b[4]) into the
sorted segment b[0..3]

b

b

10 2 3 4 The notation
b[h..k] means
elements at
indices h
through k of
list b, i.e.,
including k

22

2 3 6 98

2 3 6 9 8

2 3 6 98

Push Down

sorted

4

Push down 4 into the
sorted segment

23

42 3 6 98

2 3 6 9 8

2 3 6 98

Compare adjacent components:
swap 9 & 4

Push Down

24

4

2 3 6 98 4

2 3 6 98

2 3 6 9 8

2 3 6 98

Compare adjacent components:
swap 8 & 4

Push Down

25

4

2 3 6 98 4

2 3 6 984

2 3 6 98

2 3 6 9 8

2 3 6 98

Compare adjacent components:
swap 6 & 4

Push Down

26

4

2 3 6 98 4

2 3 6 984

2 3 6 984

2 3 6 98

2 3 6 9 8

2 3 6 98

Compare adjacent components:
DONE! No more swaps.

Push Down

See push_down() in insertion_sort.py

one push
down

one push
down

28

Sort list b using Insertion Sort (1)

b

Need to start with a sorted segment. How do you find one?

See insertion_sort()

0 1 2 3 4 5

29

Sort list b using Insertion Sort (2)

b

Need to start with a sorted segment. How do you find one?

Length 1 segment is sorted

See insertion_sort()

0 1 2 3 4 5

push_down(b, 1)

30

Sort list b using Insertion Sort (3)

push_down(b, 1)

b

Need to start with a sorted segment. How do you find one?

Length 1 segment is sorted

See insertion_sort()

0 1 2 3 4 5

Then sorted segment has length 2
push_down(b, 2)

31

Sort list b using Insertion Sort (4)

push_down(b, 1)

b

Need to start with a sorted segment. How do you find one?

Length 1 segment is sorted

See insertion_sort()

0 1 2 3 4 5

Then sorted segment has length 2
push_down(b, 2)Then sorted segment has length 3

push_down(b, 3)

32

Sort list b using Insertion Sort (rest)

push_down(b, 1)

b

Need to start with a sorted segment. How do you find one?

push_down(b, 2)

push_down(b, 3)

push_down(b, 4)

push_down(b, 5)

Length 1 segment is sorted

See insertion_sort()

0 1 2 3 4 5

Then sorted segment has length 2
Then sorted segment has length 3

Then sorted segment has length 4
Then sorted segment has length 5
Then entire list is sorted

For a list of length n, call push_down n-1 times.

Helper functions make clear the algorithm

def swap(b, h, k):

def push_down(b, k):
while k > 0 and b[k-1] > b[k]:

swap(b, k-1, k)
k= k-1

def insertion_sort(b):
for i in range(1,len(b)):

push_down(b, i)

def insertion_sort(b):
for i in range(1,len(b)):

k= i
while (k > 0 and

b[k-1] > b[k]) :
temp= b[k-1]
b[k-1]= b[k]
b[k]= temp
k= k-1

34

Difficult to understand!!

VS.

35

Algorithm Complexity

• Count the number of comparisons needed
• In the worst case, need i comparisons to push

down an element in a sorted segment with i
elements.

36

2 3 6 9 8

2 3 6 98

How much work is a push down?

push down
a “big”
value

push down
a “small”

value

This push down takes
2 comparisons

2 3 6 9 1

2 3 6 91

2 3 6 91

2 3 6 91

2 3 6 91

This push down takes
4 comparisons.

Worst case scenario:
n comparisons

needed to push down
into a length n sorted

segment.

Algorithm Complexity (Q)

def swap(b, h, k):

def push_down(b, k):

while k > 0 and b[k-1] > b[k]:

swap(b, k-1, k)

k= k-1

def insertion_sort(b):

for i in range(1,len(b)):

push_down(b, i) 37

A. ~ 1 comparison
B. ~ n comparisons
C. ~ n2 comparisons
D. ~ n3 comparisons
E. I don’t know

Count (approximately) the number of comparisons

needed to sort a list of length n

38

Algorithm Complexity (A)

• Count the number of comparisons needed
• In the worst case, need i comparisons to push

down an element in a sorted segment with i
elements.

• For a list of length n
§ 1st push down: 1 comparison

§ 2nd push down: 2 comparisons (worst case)

§ 1+2+…+ (n-1) = n*(n-1)/2 , say, n2 for big n

• For fun, check out this visualization:
https://www.youtube.com/watch?v=xxcpvCGrCBc

Complexity of algorithms discussed

• Linear search: on the order of n

• Binary search: on the order of log2 n
§ Binary search is faster but requires sorted data

• Insertion sort: on the order of n2

39

