A AP AL
{//www.cs.cq 11

WL

0/2022sp
N R Yol ORI
N . S atlNS

Lecture 18:

Subclasses & Inheritance
(Chapter 18)

Cs 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

Topics

* Why define subclasses?
= Understand the resulting hierarchy
= Design considerations
e How to define a subclass
= |nitializer
= New methods
= Write modified versions of inherited methods
= Access parent’s version using super()

Sharing Work

Problem: Redundant code.

(Any time you copy-and-paste code, you are likely
doing something wrong.)

Solution: Create a parent class with shared code
= Then, create subclasses of the parent class

= A subclass deals with specific details different from
the parent class

6
See shapes_v1.py

Announcements

e Prelim 2 is next week!

Goal: Make a drawing app

Rectangles, Stars,
Circles, and Triangles
have a lot in common,
but they are also
different in very
fundamental ways....

5
See shapes_v@.py

Defining a Subclass

class Shape:

Superclass
"""A shape located at x,y """ Parent class Shape
def _init_ (self, x, y): .. Base class
def draw(self): .. Subclass
Child class

Circle

Derived class

class Circle(Shape): Rectangle
"""An instance is a circle."""
def __init_ (self, x, y, radius): ..

def draw(self): ..

class Rectangle(Shape):
"""An in stance is a rectangle. """
def __init_ (self, x, y, ht, len): ..
def draw(self): ..

Extending Classes

class <name>(<superclass>):

Class specification

<class variables>

Class to extend
(may need module name:
<modulename>.<superclass>)

<initializer>

<methods>

So far, classes have
implicitly extended
object

init__ :write new one, access parent’s

class Shape:

e Want to use the original
version of the method?

= New method =
original+more

A shape @ location x,y
def __init_ (self, x, y):
self.x = x

= Don't repeat code from
the origina

self.y =y

e Call old method explicitly

class Circle(Shape):

Instance is Circle @ x,y w/size radius
def __init_ (self, x, y, radius):
super().__init__(x,y)
self.radius = radius

Can override methods; can access parent’s version

object
class Shape: o
"""Instance is shape @ x,y""" —init_(self)
def _init_ (self,x,y): —str_(self)
def __str__ (self): =)
return +str(self.x)+ +str(self.y)+ Shape

def draw(self):..
() __init_ (self,x,y)

__str__(self)

class Circle(Shape):
"""Instance is a Circle @ x,y with radius"""
def __init_ (self,x,y,radius):
def __str__ (self):
return +str(self.radius)+" "+super().__str_ ()
def draw(self):.. -

Circle

__init_ (self,x,y,radius)
__str__(self)

object and the Subclass Hierarchy

Example

J built-in class

¢ Subclassing creates a hierarchy
of classes

= Each class has its own
super class or parent

= Until object at the “top”

object
e object has many features
= Default operators:

super class
__init_, _str_, _eq__ Rectangle
Which of these need to be replaced?

Square

Object Attributes can be Inherited

class Shape:

an €1 id3

A shape @ location x,y
def __init_ (self, x, y):
self.x = x

Initialized in
Shape
initializer

self.y =y

radius

class Circle(Shape):
"""Instance is Circle @ x,y w/size radius
def __init_ (self, x, y, radius):
super().__init__ (x,y)
self.radius = radius

Initialized in

Circle
initializer

11

cl = Circle(1, 2, 4.90)

Why override __eq__ ? Compare equality

class Shape:
"""Instance is shape @ x,y"""
def __init__ (self,x,y):

def __eq_ (self, other):

return self.x == other.x and self.y == other.y

class Circle(Shape):
"""Instance is a Circle @ x,y with radius""”
def __init__ (self,x,y,radius):

def __eq_ (self, other):

return self.radius == other.radius and super().__eq__(other)

Want to compare equality of the values (data) of two
instances, not the id of the two instances!

Understanding Method Overriding Name Resolution Revisited
¢ To look up attribute/method name

cl = Circle(1,2,4.0)
print(str(cl))

1. Look first in instance (object folder)
2. Thenlookin the class (folder)

) e Subclasses add two more rules:
e Which __str__ do weuse?

= Start at bottom class folder
= Find first method with name
= Use that definition

e Each subclass automatically inherits
methods of parent.

3. Look in the superclass

4. Repeat 3. until reach object
Often called the Bottom—-Up Rule

cl = Circle(1,2,4.0)
r = cl.radius

id3

_— . Circl
* New method definitions override cl.draw()
those of parent. cl[id3 xL1 Y
radius -4.0

15

Q1: Name Resolution and Inheritance

. . . . class A: .
The following questions will be addressed in the * Execute the following:
lecture that follows. def f(self): >>> a = A()
return self.g() >>> b = B()
def g(self): e Whatis value of a.f()?
return 10 A-10
B: 14
class B(A): C:5
def g(self): D: ERROR
return 14 E: I don’t know
def h(self):
16 return 18 .

Q2: Name Resolution and Inheritance

class A: e Execute the following:
def f(self): >>> a = A()
return self.g() >>> b = B()
def g(self): e What is value of b.f()?
return 10 A-10
B: 14
class B(A): C:5
def g(self): D: ERROR
return 14 E: I don’t know

def h(self):
return 18 19

