Module 30

Searching & Sorting
def linear_search(v,b):

 """Returns: first occurrence of v in b (-1 if not found)
 Precond: b a list of number, v a number
 """
 # Loop variable
 i = 0
 while i < len(b) and b[i] != v:
 i = i + 1
 if i == len(b): # not found
 return -1
 return i

How many entries do we have to look at?
def linear_search(v,b):

 """Returns: first occurrence of v in b (-1 if not found)
 Precond: b a list of number, v a number
 """

 # Loop variable
 i = 0
 while i < len(b) and b[i] != v:
 i = i + 1

 if i == len(b): # not found
 return -1
 return i

How many entries do we have to look at?

All of them!
def linear_search(v,b):
 """Returns: first occurrence of v in b (-1 if not found)
 Precond: b a list of number, v a number
 """
 # Loop variable
 i = len(b)-1
 while i >= 0 and b[i] != v:
 i = i - 1
 # Equals -1 if not found
 return i

How many entries do we have to look at?
All of them!
Is There a Better Way?

• Thinking of number 0..100
 ▪ You get to guess number
 ▪ I tell you higher or lower
 ▪ Continue until get it right

• Goal: Keep # guesses low
 ▪ Use my answers to help

• Strategy?
 ▪ Start guess in the middle
 ▪ Answer eliminates half
 ▪ Go to middle of remaining
Is There a Better Way?

• Thinking of number 0..100
 ▪ You get to guess number
 ▪ I tell you higher or lower
 ▪ Continue until get it right

• Goal: Keep # guesses low
 ▪ Use my answers to help

• Strategy?
 ▪ Start guess in the middle
 ▪ Answer eliminates half
 ▪ Go to middle of remaining
Is There a Better Way?

• Thinking of number 0..100
 ▪ You get to guess number
 ▪ I tell you higher or lower
 ▪ Continue until get it right

• **Goal:** Keep # guesses low
 ▪ Use my answers to help

• **Strategy?**
 ▪ Start guess in the middle
 ▪ Answer eliminates half
 ▪ Go to middle of remaining
Is There a Better Way?

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right
- **Goal:** Keep # guesses low
 - Use my answers to help
- **Strategy?**
 - Start guess in the middle
 - Answer eliminates half
 - Go to middle of remaining

Higher!

0 50 62 75 100
Is There a Better Way?

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right

- **Goal:** Keep # guesses low
 - Use my answers to help

- **Strategy?**
 - Start guess in the middle
 - Answer eliminates half
 - Go to middle of remaining
def binary_search(v, b):
 # Loop variable(s)
 i = 0, j = len(b)
 while i < j and b[i] != v:
 mid = (i+j)//2
 if b[mid] < v:
 j = mid
 elif b[mid] > v:
 i = mid
 else:
 return mid
 return -1 # not found

Requires that the data is sorted!

But few checks!
Observation About Sorting

• Sorting data can speed up searching
 ▪ Sorting takes time, but do it once
 ▪ Afterwards, can search many times

• Not just searching. Also speeds up
 ▪ Duplicate elimination in data sets
 ▪ Data compression
 ▪ Physics computations in computer games

• Why it is a major area of computer science
The Sorting Challenge

- **Given:** A list of numbers
- **Goal:** Sort those numbers using only
 - Iteration (while-loops or for-loops)
 - Comparisons (< or >)
 - Assignment statements
- **Why?** For proper **analysis**.
 - Methods/functions come with hidden costs
 - Everything above has no hidden costs
 - Each comparison or assignment is “1 step”
This Requires Some Notation

• As the list is sorted…
 ▪ Part of the list will be sorted
 ▪ Part of the list will not be sorted

• Need a way to refer to portions of the list
 ▪ Notation to refer to sorted/unsorted parts

• And have to do it without slicing!
 ▪ Slicing makes a copy
 ▪ Want to sort original list, not a copy
This Requires Some Notation

- As the list is sorted...
 - Part of the list **will** be sorted
 - Part of the list will **not** be sorted
- Need a way to refer to portions of the list
 - Notation to refer to sorted/unsorted parts
- And have to do it **without** slicing!
 - Slicing makes a copy
 - Want to sort original list, not a copy

But we will be less formal than in past years!
Terminology: Range Notation

- $m..n$ is a range containing $n+1-m$ values
 - $2..5$ contains 2, 3, 4, 5. Contains $5+1-2 = 4$ values
 - $2..4$ contains 2, 3, 4. Contains $4+1-2 = 3$ values
 - $2..3$ contains 2, 3. Contains $3+1-2 = 2$ values
 - $2..2$ contains 2. Contains $2+1-2 = 1$ values
 - $2..1$ contains ???

What does $2..1$ contain?

A: nothing
B: 2,1
C: 1
D: 2
E: something else
Terminology: Range Notation

- \(m..n \) is a range containing \(n+1-m \) values
 - 2..5 contains 2, 3, 4, 5. Contains \(5+1 - 2 = 4 \) values
 - 2..4 contains 2, 3, 4. Contains \(4+1 - 2 = 3 \) values
 - 2..3 contains 2, 3. Contains \(3+1 - 2 = 2 \) values
 - 2..2 contains 2. Contains \(2+1 - 2 = 1 \) values
 - 2..1 contains ???

What does 2..1 contain?

- A: nothing
- B: 2,1
- C: 1
- D: 2
- E: something else
Terminology: Range Notation

- $m..n$ is a range containing $n+1-m$ values
 - 2..5 contains 2, 3, 4, 5. Contains $5+1-2=4$ values
 - 2..4 contains 2, 3, 4. Contains $4+1-2=3$ values
 - 2..3 contains 2, 3. Contains $3+1-2=2$ values
 - 2..2 contains 2. Contains $2+1-2=1$ values
 - 2..1 contains ???

- The notation $m..n$, always implies that $m \leq n+1$
 - So you can assume that even if we do not say it
 - If $m = n+1$, the range has 0 values
Horizontal Notation

- Want a pictoral way to visualize this sorting
 - Represent the list as long rectangle
 - We saw this idea in divide-and-conquer

- Do not show individual boxes
 - Just dividing lines between regions
 - Label dividing lines with indices
 - But index is either left or right of dividing line

\[(h+1) - h = 1\]
Horizontal Notation

• Label regions with properties
 - **Example**: Sorted or ???

```
0               k               n
b                sorted        ???
```

- b[0..k−1] is sorted
- b[k..n-1] **unknown** (might be sorted)

• Picture allows us to track progress
Visualizing Sorting

Start:

```
0
b
?  n
```

Goal:

```
0
b
sorted  n
```

In-Progress:

```
0
b
sorted  n
?  i
```
Insertion Sort

\[i = 0 \]

While \(i < n \):

Push \(b[i] \) down into its
sorted position in \(b[0..i] \)

\[i = i + 1 \]

Remember the restrictions!
Insertion Sort: Moving into Position

```python
i = 0
while i < n:
    push_down(b, i)
    i = i + 1

def push_down(b, i):
    j = i
    while j > 0:
        if b[j-1] > b[j]:
            swap(b, j-1, j)
            j = j - 1
```

Swap shown in the lecture about lists.
Insertion Sort: Moving into Position

\[i = 0 \]

\[\text{while } i < n: \]
\[\quad \text{push_down}(b, i) \]
\[\quad i = i + 1 \]

```python
def push_down(b, i):
    j = i
    while j > 0:
        if b[j-1] > b[j]:
            swap(b, j-1, j)
        j = j - 1
```

\[
\begin{array}{ccccccc}
0 & 2 & 4 & 4 & 6 & 6 & 7 \\
\hline
i & 5 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
0 & 2 & 4 & 4 & 6 & 6 & 5 \\
\hline
i & 7 \\
\end{array}
\]

swap shown in the lecture about lists
Insertion Sort: Moving into Position

\[
i = 0 \\
\text{while } i < n: \\
\quad \text{push_down}(b, i) \\
\quad i = i + 1 \\
\]

\[
def \text{push_down}(b, i):
\quad j = i \\
\quad \text{while } j > 0:
\quad \quad \text{if } b[j - 1] > b[j]:
\quad \quad \quad \text{swap}(b, j - 1, j) \\
\quad \quad j = j - 1
\]

\[
\begin{array}{ll|l|l}
0 & i & 0 & i \\
2 & 4 & 4 & 6 & 6 & 7 & 5 \\
2 & 4 & 4 & 6 & 5 & 6 & 7 \\
2 & 4 & 4 & 6 & 5 & 6 & 7 \\
\end{array}
\]
Insertion Sort: Moving into Position

\[i = 0 \]

\[\text{while } i < n: \]

\[\text{push_down}(b, i) \]

\[i = i + 1 \]

\[\text{def push_down}(b, i): \]

\[j = i \]

\[\text{while } j > 0: \]

\[\text{if } b[j-1] > b[j]: \]

\[\text{swap}(b, j-1, j) \]

\[j = j - 1 \]

\[0 \quad 2 \quad 4 \quad 4 \quad 6 \quad 6 \quad 7 \]

\[i \]

\[5 \]

\[0 \quad 2 \quad 4 \quad 4 \quad 6 \quad 6 \quad 5 \]

\[i \]

\[7 \]

\[0 \quad 2 \quad 4 \quad 4 \quad 6 \quad 5 \quad 6 \]

\[i \]

\[7 \]

\[0 \quad 2 \quad 4 \quad 4 \quad 5 \quad 6 \quad 6 \]

\[i \]

\[7 \]
The Importance of Helper Functions

i = 0
while i < n:
 push_down(b,i)
i = i+1

def push_down(b, i):
 j = i
 while j > 0:
 if b[j-1] > b[j]:
 swap(b,j-1,j)
 j = j-1

VS

Can you understand all this code below?

i = 0
while i < n:
 j = i
 while j > 0:
 if b[j-1] > b[j]:
 temp = b[j]
 b[j] = b[j-1]
 b[j-1] = temp
 j = j -1
i = i +1
Measuring Performance

- Performance is a tricky thing to measure
 - Different computers run at different speeds
 - Memory also has a major effect as well
- Need an independent way to measure
 - Measure in terms of “basic steps”
 - **Example**: Searching counted # of checks
- For sorting, we measure in terms of **swaps**
 - Three assignment statements
 - Present in all sorting algorithms
def push_down(b, i):
 """Push value at position i into sorted position in b[0..i-1]""
 j = i
 while j > 0:
 if b[j-1] > b[j]:
 swap(b,j-1,j)
 j = j-1
 Total Swaps: $0 + 1 + 2 + 3 + \ldots + (n-1) = \frac{(n-1)n}{2} = \frac{n^2-n}{2}$

• b[0..i-1]: i elements

• Worst case:
 - i = 0: 0 swaps
 - i = 1: 1 swap
 - i = 2: 2 swaps

• Pushdown is in a loop
 - Called for i in 0..n
 - i swaps each time
Insertion Sort: Performance

```python
def push_down(b, i):
    """Push value at position i into sorted position in b[0..i-1]""
    j = i
    while j > 0:
        if b[j-1] > b[j]:
            swap(b, j-1, j)
        j = j-1
```

- **b[0..i-1]:** i elements
- **Worst case:**
 - i = 0: 0 swaps
 - i = 1: 1 swap
 - i = 2: 2 swaps
- **Pushdown is in a loop**
 - Called for i in 0..n
 - i swaps each time

Total Swaps: $0 + 1 + 2 + 3 + \ldots + (n-1) = \frac{(n-1)n}{2} = \frac{n^2-n}{2}$

Insertion sort is an n^2 algorithm
Algorithm “Complexity”

- **Given**: a list of length n and a problem to solve
- **Complexity**: *rough* number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

<table>
<thead>
<tr>
<th>Complexity</th>
<th>n=10</th>
<th>n=100</th>
<th>n=1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log n$</td>
<td>0.003 s</td>
<td>0.006 s</td>
<td>0.01 s</td>
</tr>
<tr>
<td>n</td>
<td>0.01 s</td>
<td>0.1 s</td>
<td>1 s</td>
</tr>
<tr>
<td>$n \log n$</td>
<td>0.016 s</td>
<td>0.32 s</td>
<td>4.79 s</td>
</tr>
<tr>
<td>n^2</td>
<td>0.1 s</td>
<td>10 s</td>
<td>16.7 m</td>
</tr>
<tr>
<td>n^3</td>
<td>1 s</td>
<td>16.7 m</td>
<td>11.6 d</td>
</tr>
<tr>
<td>2^n</td>
<td>1 s</td>
<td>4×10^{19} y</td>
<td>3×10^{290} y</td>
</tr>
</tbody>
</table>
Algorithm “Complexity”

- **Given**: a list of length n and a problem to solve
- **Complexity**: *rough* number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

<table>
<thead>
<tr>
<th>Complexity</th>
<th>n=10</th>
<th>n=100</th>
<th>n=1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>log n</td>
<td></td>
<td>0.006 s</td>
<td>0.01 s</td>
</tr>
<tr>
<td>Linear Search</td>
<td></td>
<td>0.1 s</td>
<td>1 s</td>
</tr>
<tr>
<td>n log n</td>
<td>0.016s</td>
<td>0.32 s</td>
<td>4.79 s</td>
</tr>
<tr>
<td>n^2</td>
<td></td>
<td>10 s</td>
<td>16.7 m</td>
</tr>
<tr>
<td>n^3</td>
<td>1 s</td>
<td>16.7 m</td>
<td>11.6 d</td>
</tr>
<tr>
<td>2^n</td>
<td>1 s</td>
<td>4x10^{19} y</td>
<td>3x10^{290} y</td>
</tr>
</tbody>
</table>
Algorithm “Complexity”

- **Given**: a list of length n and a problem to solve
- **Complexity**: *rough* number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

<table>
<thead>
<tr>
<th>Complexity</th>
<th>n=10</th>
<th>n=100</th>
<th>n=1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>log n</td>
<td>0.003 s</td>
<td>0.036 s</td>
<td>0.01 s</td>
</tr>
<tr>
<td>n</td>
<td>0.01 s</td>
<td>1 s</td>
<td>10 s</td>
</tr>
<tr>
<td>n log n</td>
<td>0.016 s</td>
<td>0.32 s</td>
<td>4.79 s</td>
</tr>
<tr>
<td>n^2</td>
<td>0.1 s</td>
<td>10 s</td>
<td>16.7 m</td>
</tr>
<tr>
<td>n^3</td>
<td>1 s</td>
<td>16.7 m</td>
<td>11.6 d</td>
</tr>
<tr>
<td>2^n</td>
<td>1 s</td>
<td>4x10^{19} y</td>
<td>3x10^{290} y</td>
</tr>
</tbody>
</table>

Major Topic in 2110: Beyond scope of this course
Insertion Sort is Not Great

• Typically n^2 is okay, but not great
 ▪ Will perform horribly on large data
 ▪ Very bad when performance critical (games)

• We would like to do better than this
 ▪ Can we get n swaps (no)?
 ▪ How about $n \log n$ (maybe)

• This will require a new algorithm
 ▪ Let’s return to horizontal notation
A New Algorithm

Start: \(b \)

Goal: \(b \) sorted

In-Progress: \(b \) sorted, \(\leq b[i..] \) \(\geq b[0..i-1] \)

First segment always contains smaller values
Selection Sort

\[i = 0 \]

while \(i < n \):

\[
\begin{array}{c|c|c|c}
0 & i & n \\
\hline
\text{sorted, } \leq b[i..] & \geq b[0..i-1] & \\
\end{array}
\]

Find minimum in \(b[i..] \)

Move it to position \(i \)

\(i = i + 1 \)

Remember the restrictions!
Selection Sort

How fast is this?

\[i = 0 \]
\[\text{while } i < n: \]
\[\quad j = \text{index of min of } b[i..n-1] \]
\[\quad \text{swap}(b, i, j) \]
\[i = i + 1 \]
Selection Sort

i = 0

while i < n:
 j = index of min of b[i..n-1]
 swap(b,i,j)

This is also n^2!

i = i+1

This is n steps
What is the Problem

• Both insertion, selection sort are nested loops
 ▪ Outer loop over each element to sort
 ▪ Inner loop to put next element in place
 ▪ Each loop is n steps. $n \times n = n^2$

• To do better we must *eliminate* a loop
 ▪ But with what? Recursion!

• But to do this we have to back up a bit
 ▪ Need to introduce an intermediate algorithm
The Problem Statement

- Given a list $b[h..k]$ with some value x in $b[h]$:

 \[
 \begin{array}{c|c|c}
 h & x & ? \\
 \end{array}
 \]

- Start: $b \leq x \ x \geq x$

- Swap elements of $b[h..k]$ to get this answer:

 \[
 \begin{array}{c|c|c|c|c|c|c}
 h & i & i+1 & k \\
 \end{array}
 \]

- Goal: $b \leq x \ x \geq x$

- In-Progress: $b \leq x \ x \ ? \geq x$

Indices b, h important!
Might partition only part
Partition Algorithm

- Given a list segment b[h..k] with some value x in b[h]:

 [\[
 \begin{array}{c|c}
 \text{h} & \text{k} \\
 \hline
 \text{Start: } & \begin{array}{c|c}
 \text{b} & \begin{array}{c}
 \text{x} \\
 \end{array} \\
 \end{array}
 \end{array}
 \]

- Swap elements of b[h..k] to get this answer

 [\[
 \begin{array}{c|c|c}
 \text{h} & \text{i} & \text{i+1} & \text{k} \\
 \hline
 \text{Goal: } & \begin{array}{c|c|c}
 \text{b} & \begin{array}{c}
 \text{\leq x} \\
 \text{x} \\
 \text{\geq x}
 \end{array}
 \end{array}
 \end{array}
 \]

change:

 [\[
 \begin{array}{c|c|c|c}
 \text{h} & \text{i} & \text{i+1} & \text{k} \\
 \hline
 \text{b} & \begin{array}{c}
 \begin{array}{c}
 \text{3} \ 5 \ 4 \ 1 \ 6 \ 2 \ 3 \ 8 \ 1
 \end{array}
 \end{array}
 \end{array}
 \]

into

 [\[
 \begin{array}{c|c|c|c}
 \text{h} & \text{i} & \text{i+1} & \text{k} \\
 \hline
 \text{b} & \begin{array}{c}
 \begin{array}{c}
 1 \ 2 \ 1 \ 3 \ 5 \ 4 \ 6 \ 3 \ 8
 \end{array}
 \end{array}
 \end{array}
 \]

or

 [\[
 \begin{array}{c|c|c|c}
 \text{h} & \text{i} & \text{i+1} & \text{k} \\
 \hline
 \text{b} & \begin{array}{c}
 \begin{array}{c}
 1 \ 2 \ 3 \ 1 \ 3 \ 4 \ 5 \ 6 \ 8
 \end{array}
 \end{array}
 \end{array}
 \]

- x is called the pivot value
 - x is not a program variable
 - denotes value initially in b[h]
def partition(b, h, k):

 """Partition list b[h..k] around a pivot x = b[h]"""
 i = h; j = k+1; x = b[h]

 while i < j-1:
 if b[i+1] >= x:
 # Move to end of block.
 swap(b,i+1,j-1)
 j = j - 1
 else: # b[i+1] < x
 swap(b,i,i+1)
 i = i + 1

 return i

partition(b,h,k), not partition(b[h:k+1])

Remember, slicing always copies the list!

We want to partition the original list
def partition(b, h, k):
 # Partition list b[h..k] around a pivot x = b[h]
 i = h; j = k+1; x = b[h]

 while i < j-1:
 if b[i+1] >= x:
 # Move to end of block.
 swap(b,i+1,j-1)
 j = j - 1
 else:
 # b[i+1] < x
 swap(b,i,i+1)
 i = i + 1

 return i
def partition(b, h, k):
 """Partition list b[h..k] around a pivot x = b[h]"""
 i = h; j = k+1; x = b[h]

 while i < j-1:
 if b[i+1] >= x:
 # Move to end of block.
 swap(b,i+1,j-1)
 j = j - 1
 else: # b[i+1] < x
 swap(b,i,i+1)
 i = i + 1

 return i
def partition(b, h, k):
 """Partition list b[h..k] around a pivot x = b[h]"""
 i = h; j = k+1; x = b[h]
 while i < j-1:
 if b[i+1] >= x:
 # Move to end of block.
 swap(b,i+1,j-1)
 j = j - 1
 else: # b[i+1] < x
 swap(b,i,i+1)
 i = i + 1
 return i
def partition(b, h, k):
 """Partition list b[h..k] around a pivot x = b[h]"""
 i = h; j = k+1; x = b[h]

 while i < j-1:
 if b[i+1] >= x:
 # Move to end of block.
 swap(b, i+1, j-1)
 j = j - 1
 else: # b[i+1] < x
 swap(b, i, i+1)
 i = i + 1

 return i
Why is this Useful?

- Will use this algorithm to replace inner loop
 - The inner loop cost us n swaps every time
- Can this reduce the number of swaps?
 - Worst case is k-h swaps
 - This is n if partitioning the whole list
 - But less if only partitioning part
- **Idea:** Break up list and partition only part?
 - This is *Divide-and-Conquer*!
Sorting with Partitions

• Given a list segment $b[h..k]$ with some value x in $b[h]$:

\[
\begin{array}{c}
\text{h} \\
\mid \text{x} \mid \\
\text{?} \\
\text{k}
\end{array}
\]

Start:

\[
\begin{array}{c}
\text{b} \\
\mid \text{<= x} \mid \text{x} \mid \text{>= x} \\
\text{k}
\end{array}
\]

Goal:

• Swap elements of $b[h..k]$ to get this answer

Recursive partitions = sorting

- Called **QuickSort** (why???)
- Popular, fast sorting technique
Sorting with Partitions

- Given a list segment $b[h..k]$ with some value x in $b[h]$:

 \[\begin{array}{cc}
 h & k \\
 \text{Start: } b & \begin{array}{ccc} x & ? \\
 \end{array} \\
 \end{array} \]

- Swap elements of $b[h..k]$ to get this answer

 \[\begin{array}{cccc}
 h & i & i+1 & k \\
 \text{Goal: } b & \begin{array}{cccc} y & ? & x & \geq x \\
 \end{array} \\
 \end{array} \]

Partition Recursively

Recursive partitions = sorting
- Called **QuickSort** (why???)
- Popular, fast sorting technique
Sorting with Partitions

- Given a list segment $b[h..k]$ with some value x in $b[h]$:

 Start: $b[x]$

 Goal: $b[\leq y \ y \ >\ y \ x \ >\ x]$

- Swap elements of $b[h..k]$ to get this answer

Recursive partitions = sorting
- Called **QuickSort** (why???)
- Popular, fast sorting technique
QuickSort

```python
def quick_sort(b, h, k):
    """Sort the array fragment b[h..k]"""
    if b[h..k] has fewer than 2 elements:
        return
    j = partition(b, h, k)
    # b[h..j–1] <= b[j] <= b[j+1..k]
    # Sort b[h..j–1] and b[j+1..k]
    quick_sort(b, h, j-1)
    quick_sort(b, j+1, k)
```

- **Worst Case:**
 - array already sorted
 - Or almost sorted
 - n^2 in that case
- **Average Case:**
 - array is scrambled
 - $n \log n$ in that case
 - Best sorting time!

<table>
<thead>
<tr>
<th>h</th>
<th>i</th>
<th>i+1</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre:</td>
<td>b</td>
<td>x</td>
<td>?</td>
</tr>
<tr>
<td>post:</td>
<td>b</td>
<td><= x</td>
<td>x</td>
</tr>
</tbody>
</table>
So Does that Solve It?

• Worst case still seems bad! Still n^2
 • Only happens in small number of cases
 • Just happens that case is common (already sorted)
• Can greatly reduce issue with randomization
 • Swap start with random element in list
 • Now pivot is random and already sorted unlikely

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>x</td>
<td>?</td>
<td>y</td>
</tr>
</tbody>
</table>

Start:
So Does that Solve It?

- Worst case still seems bad! Still n^2
 - Only happens in small number of cases
 - Just happens that case is common (already sorted)
- Can greatly reduce issue with randomization
 - Swap start with random element in list
 - Now pivot is random and already sorted unlikely

![Diagram]

Start: $b \ [x \ ? \ y \ ?]$
Can We Do Better?

• There is guaranteed n log n sorting algorithm
 ▪ Called **merge sort** (beyond scope of course)
 ▪ Used heavily in large databases
 ▪ But it has high overhead (slower on small data)

• What does the `sort()` method use?
 ▪ Uses **Timsort** (invented by Tim Peters in 2002)
 ▪ Combination of insertion sort and merge sort
 ▪ Insertion on small data, merge sort on large
Can We Do Better?

- There is guaranteed $n \log n$ sorting algorithm
 - Called **merge sort** (beyond scope of course)
 - Used heavily in large databases
 - But it has high overhead (slower on small data)
- What does the `sort()` method use?
 - Uses **Timsort** (invented by Tim Peters in 2002)
 - Combination of insertion sort and merge sort
 - Insertion on small data,

Quicksort is 1959!