Lecture 25

Searching & Sorting
Announcements for This Lecture

Prelim 2

- Prelim, Tonight at 7:30
 - A–L in Bailey 101
 - M–Z in Uris G01
- Material up to Nov. 8
 - Recursion + Loops + Classes
- Graded this Weekend
 - Grades posted on Monday
 - Need time for make-ups

Assignments

- A6 still not graded
 - Will be done by after break
 - Staff needs to take their time
- A7 is due Monday Dec. 5
 - Extensions are possible
 - Contact your lab instructor
def linear_search(v, b):
 """Returns: first occurrence of v in b (-1 if not found)"
 Precond: b a list of number, v a number
 """
 # Loop variable
 i = 0
 while i < len(b) and b[i] != v:
 i = i + 1
 if i == len(b): # not found
 return -1
 return i
def linear_search(v, b):
 """Returns: first occurrence of v in b (-1 if not found)
 Precond: b a list of number, v a number
 """
 # Loop variable
 i = 0
 while i < len(b) and b[i] != v:
 i = i + 1
 if i == len(b): # not found
 return -1
 return i

How many entries do we have to look at?
All of them!
def linear_search(v, b):
 """Returns: last occurrence of v in b (-1 if not found)
 Precond: b a list of number, v a number
 """
 # Loop variable
 i = len(b) - 1
 while i >= 0 and b[i] != v:
 i = i - 1
 # Equals -1 if not found
 return i

How many entries do we have to look at?

All of them!
Is There a Better Way?

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right

- **Goal:** Keep # guesses low
 - Use my answers to help

- **Strategy?**
 - Start guess in the middle
 - Answer eliminates half
 - Go to middle of remaining

0 50 100
Is There a Better Way?

Thinking of number 0..100
- You get to guess number
- I tell you higher or lower
- Continue until get it right

Goal: Keep # guesses low
- Use my answers to help

Strategy?
- Start guess in the middle
- Answer eliminates half
- Go to middle of remaining
Is There a Better Way?

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right

- **Goal:** Keep # guesses low
 - Use my answers to help

- **Strategy?**
 - Start guess in the middle
 - Answer eliminates half
 - Go to middle of remaining
Is There a Better Way?

- Thinking of number 0..100
 - You get to guess number
 - I tell you higher or lower
 - Continue until get it right

- **Goal:** Keep # guesses low
 - Use my answers to help

- **Strategy?**
 - Start guess in the middle
 - Answer eliminates half
 - Go to middle of remaining
Is There a Better Way?

• Thinking of number 0..100
 ▪ You get to guess number
 ▪ I tell you higher or lower
 ▪ Continue until get it right

• **Goal:** Keep # guesses low
 ▪ Use my answers to help

• **Strategy?**
 ▪ Start guess in the middle
 ▪ Answer eliminates half
 ▪ Go to middle of remaining

Correct!
def binary_search(v,b):
 # Loop variable(s)
 i = 0, j = len(b)
 while i < j and b[i] != v:
 mid = (i+j)//2
 if b[mid] < v:
 i = mid+1
 elif b[mid] > v:
 j = mid
 else:
 return mid
 return -1 # not found

Requires that the data is sorted!

But few checks!
Observation About Sorting

- Sorting data can speed up searching
 - Sorting takes time, but do it once
 - Afterwards, can search many times
- Not just searching. Also speeds up
 - Duplicate elimination in data sets
 - Data compression
 - Physics computations in computer games
- Why it is a major area of computer science
The Sorting Challenge

• **Given:** A list of numbers
• **Goal:** Sort those numbers using only
 - Iteration (while-loops or for-loops)
 - Comparisons (< or >)
 - Assignment statements

• **Why?** For proper **analysis**.
 - Methods/functions come with hidden costs
 - Everything above has no hidden costs
 - Each comparison or assignment is “1 step”
This Requires Some Notation

- As the list is sorted...
 - Part of the list *will* be sorted
 - Part of the list will *not* be sorted
- Need a way to refer to portions of the list
 - Notation to refer to sorted/unsorted parts
- And have to do it *without* slicing!
 - Slicing makes a *copy*
 - Want to sort original list, not a copy
This Requires Some Notation

• As the list is sorted…
 ▪ Part of the list **will** be sorted
 ▪ Part of the list will **not** be sorted

• Need a way to refer to portions of the list
 ▪ Notation to refer to sorted/unsorted parts

• And have to do it **without** slicing!
 ▪ Slicing makes a **copy**
 ▪ Want to sort original list, not a copy

But we will be less formal than in previous years!
Recall: Range Notation

- \(m..n \) is a range containing \(n+1-m \) values
 - \(2..5 \) contains 2, 3, 4, 5. Contains 5+1 – 2 = 4 values
 - \(2..4 \) contains 2, 3, 4. Contains 4+1 – 2 = 3 values
 - \(2..3 \) contains 2, 3. Contains 3+1 – 2 = 2 values
 - \(2..2 \) contains 2. Contains 2+1 – 2 = 1 values
 - \(2..1 \) contains ???

- The notation \(m..n \), always implies that \(m \leq n+1 \)
 - So you can assume that even if we do not say it
 - If \(m = n+1 \), the range has 0 values
Recall: Range Notation

- **m..n** is a range containing **n+1-m** values
 - 2..5 contains 2, 3, 4, 5. Contains 5+1-2-1 = 4 values
 - 2..4 contains 2, 3, 4. Contains 4+1-2-1 = 3 values
 - 2..3 contains 2, 3. Contains 3+1-2-1 = 2 values
 - 2..2 contains 2. Contains 2+1-2-1 = 1 values
 - 2..1 contains ???

- The notation **m..n**, always implies that **m <= n+1**
 - So you can assume that even if we do not say it
 - If **m = n+1**, the range has 0 values

Not the same as range(m,n)
Horizontal Notation

- Want a pictoral way to visualize this sorting
 - Represent the list as long rectangle
 - We saw this idea in divide-and-conquer

\[
\begin{array}{c|c|c}
0 & h & k \\
\hline
b & & \\
\end{array}
\]

- Do not show individual boxes
 - Just dividing lines between regions
 - Label dividing lines with indices
 - But index is either left or right of dividing line

\[(h+1) - h = 1\]
Horizontal Notation

- Label regions with properties
 - **Example:** Sorted or ???
 - $b[0..k-1]$ is sorted
 - $b[k..n-1]$ **unknown** (might be sorted)

- Picture allows us to track progress
Visualizing Sorting

Start:

\[
\begin{array}{c}
0 \text{ \quad } n \\
\text{b} \quad \text{?}
\end{array}
\]

Goal:

\[
\begin{array}{c}
0 \quad n \\
\text{b} \quad \text{sorted}
\end{array}
\]

In-Progress:

\[
\begin{array}{c}
0 \quad i \quad n \\
\text{b} \quad \text{sorted} \quad ?
\end{array}
\]
Insertion Sort

\[i = 0 \]

while \(i < n \):

Push \(b[i] \) down into its
sorted position in \(b[0..i] \)

\(i = i + 1 \)

Remember the restrictions!
Insertion Sort: Moving into Position

\[i = 0 \]

\[\text{while } i < n: \]
\[\quad \text{push_down}(b,i) \]
\[\quad i = i + 1 \]

\[\text{def push_down}(b, i): \]
\[\quad j = i \]
\[\quad \text{while } j > 0: \]
\[\quad \quad \text{if } b[j-1] > b[j]: \]
\[\quad \quad \quad \text{swap}(b,j-1,j) \]
\[\quad \quad j = j - 1 \]

\[\begin{array}{|c|c|}
0 & i \\
\hline
2 & 4 & 4 & 6 & 6 & 7 & 5
\end{array} \]

swap shown in the lecture about lists
Insertion Sort: Moving into Position

\[i = 0 \]

\[
\text{while } i < n:\n\quad \text{push_down}(b,i)\\
\quad i = i + 1
\]

\[
\text{def push_down}(b, i):\\
\quad j = i\\
\quad \text{while } j > 0:\n\quad \quad \text{if } b[j-1] > b[j]:\\
\quad \quad \quad \text{swap}(b, j-1, j)\\
\quad \quad j = j-1
\]
Insertion Sort: Moving into Position

```python
i = 0
while i < n:
    push_down(b, i)
    i = i + 1

def push_down(b, i):
    j = i
    while j > 0:
        if b[j-1] > b[j]:
            swap(b, j-1, j)
        j = j - 1
```

Diagram:

1. Initial array: 0 2 4 4 6 6 7
2. After 1st pass: 0 2 4 4 6 6 7
3. After 2nd pass: 0 2 4 4 6 5 7
4. After 3rd pass: 0 2 4 4 5 6 7

Swap shown in the lecture about lists.

11/17/22
Searching & Sorting
Insertion Sort: Moving into Position

\[i = 0 \]

```python
while i < n:
    push_down(b, i)
    i = i + 1
```

def push_down(b, i):

\[j = i \]

```python
while j > 0:
    if b[j-1] > b[j]:
        swap(b, j-1, j)
    j = j - 1
```

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

swap shown in the lecture about lists
The Importance of Helper Functions

```python
i = 0
while i < n:
    push_down(b, i)
    i = i + 1

def push_down(b, i):
    j = i
    while j > 0:
        if b[j-1] > b[j]:
            swap(b, j-1, j)
        j = j - 1
```

VS

```python
i = 0
while i < n:
    j = i
    while j > 0:
        if b[j-1] > b[j]:
            temp = b[j]
            b[j] = b[j-1]
            b[j-1] = temp
        j = j - 1
    i = i + 1
```

Can you understand all this code below?

11/17/22

Searching & Sorting
Measuring Performance

• Performance is a tricky thing to measure
 ▪ Different computers run at different speeds
 ▪ Memory also has a major effect as well

• Need an independent way to measure
 ▪ Measure in terms of “basic steps”
 ▪ Example: Searching counted # of checks

• For sorting, we measure in terms of swaps
 ▪ Three assignment statements
 ▪ Present in all sorting algorithms
Insertion Sort: Performance

```python
def push_down(b, i):
    """Push value at position i into sorted position in b[0..i-1]""
    j = i
    while j > 0:
        if b[j-1] > b[j]:
            swap(b,j-1,j)
        j = j-1
```

- **b[0..i-1]:** i elements
- **Worst case:**
 - i = 0: 0 swaps
 - i = 1: 1 swap
 - i = 2: 2 swaps
- **Pushdown is in a loop**
 - Called for i in 0..n
 - i swaps each time

Total Swaps: 0 + 1 + 2 + 3 + … (n-1) = (n-1)*n/2 = (n^2-n)/2
def push_down(b, i):
 """Push value at position i into sorted position in b[0..i-1]""
 j = i
 while j > 0:
 if b[j-1] > b[j]:
 swap(b,j-1,j)
 j = j-1

• b[0..i-1]: i elements

• Worst case:
 ▪ i = 0: 0 swaps
 ▪ i = 1: 1 swap
 ▪ i = 2: 2 swaps

• Pushdown is in a loop
 ▪ Called for i in 0..n
 ▪ i swaps each time

Insertion sort is an \(n^2 \) algorithm

Total Swaps: \[0 + 1 + 2 + 3 + \ldots (n-1) = \frac{(n-1)\times n}{2} = \frac{n^2-n}{2} \]
Algorithm “Complexity”

• **Given**: a list of length n and a problem to solve
• **Complexity**: *rough* number of steps to solve worst case
• Suppose we can compute 1000 operations a second:

<table>
<thead>
<tr>
<th>Complexity</th>
<th>n=10</th>
<th>n=100</th>
<th>n=1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>log n</td>
<td>0.003 s</td>
<td>0.006 s</td>
<td>0.01 s</td>
</tr>
<tr>
<td>n</td>
<td>0.01 s</td>
<td>0.1 s</td>
<td>1 s</td>
</tr>
<tr>
<td>n log n</td>
<td>0.016 s</td>
<td>0.32 s</td>
<td>4.79 s</td>
</tr>
<tr>
<td>n²</td>
<td>0.1 s</td>
<td>10 s</td>
<td>16.7 m</td>
</tr>
<tr>
<td>n³</td>
<td>1 s</td>
<td>16.7 m</td>
<td>11.6 d</td>
</tr>
<tr>
<td>2ⁿ</td>
<td>1 s</td>
<td>4x10¹⁹ y</td>
<td>3x10²⁹⁰ y</td>
</tr>
</tbody>
</table>
Algorithm “Complexity”

- **Given**: a list of length n and a problem to solve
- **Complexity**: *rough* number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

<table>
<thead>
<tr>
<th>Complexity</th>
<th>$n=10$</th>
<th>$n=100$</th>
<th>$n=1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log n$</td>
<td>0.006 s</td>
<td>0.01 s</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>0.1 s</td>
<td>1 s</td>
<td></td>
</tr>
<tr>
<td>$n \log n$</td>
<td>0.016 s</td>
<td>0.32 s</td>
<td>4.79 s</td>
</tr>
<tr>
<td>n^2</td>
<td>10 s</td>
<td>16.7 m</td>
<td>16.7 m</td>
</tr>
<tr>
<td>n^3</td>
<td>1 s</td>
<td>16.7 m</td>
<td>11.6 d</td>
</tr>
<tr>
<td>2^n</td>
<td>1 s</td>
<td>4x1019 y</td>
<td>3x10290 y</td>
</tr>
</tbody>
</table>
Algorithm “Complexity”

- **Given**: a list of length n and a problem to solve
- **Complexity**: rough number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

<table>
<thead>
<tr>
<th>Complexity</th>
<th>n=10</th>
<th>n=100</th>
<th>n=1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>log n</td>
<td>0.003 s</td>
<td>0.036 s</td>
<td>0.01 s</td>
</tr>
<tr>
<td>n</td>
<td>1 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n log n</td>
<td>4.79 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n²</td>
<td>16.7 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n³</td>
<td>1 s</td>
<td>16.7 m</td>
<td>11.6 d</td>
</tr>
<tr>
<td>2ⁿ</td>
<td>1 s</td>
<td>4x10¹⁹ y</td>
<td>3x10²⁹⁰ y</td>
</tr>
</tbody>
</table>

Major Topic in 2110: Beyond scope of this course
Insertion Sort is Not Great

• Typically n^2 is okay, but not great
 ▪ Will perform horribly on large data
 ▪ Very bad when performance critical (games)

• We would like to do better than this
 ▪ Can we get n swaps (no)?
 ▪ How about $n \log n$ (maybe)

• This will require a new algorithm
 ▪ Let’s return to horizontal notation
A New Algorithm

Start:

<table>
<thead>
<tr>
<th>b</th>
<th>?</th>
</tr>
</thead>
</table>

Goal:

| b | sorted |

In-Progress:

| b | sorted, ≤ b[i..] | ≥ b[0..i-1] |

First segment always contains smaller values
Selection Sort

\[i = 0 \]
\[\text{while } i < n: \]
\[\# \text{ Find minimum in } b[i..] \]
\[\# \text{ Move it to position } i \]
\[i = i + 1 \]

Remember the restrictions!
Selection Sort

How fast is this?

\[i = 0 \]

while \(i < n \):

\[j = \text{index of min of } b[i..n-1] \]

\[\text{swap}(b, i, j) \]

\[i = i + 1 \]
Selection Sort

This is also \(n^2 \)!

\[i = 0 \]

\textbf{while} \(i < n \):

\[j = \text{index of min of } b[i..n-1] \]

swap(\(b, i, j \)) \[\text{This is } n \text{ steps} \]

\[i = i + 1 \]
What is the Problem?

• Both insertion, selection sort are nested loops
 ▪ Outer loop over each element to sort
 ▪ Inner loop to put next element in place
 ▪ Each loop is n steps. \(n \times n = n^2 \)

• To do better we must eliminate a loop
 ▪ But how do we do that?
 ▪ What is like a loop? Recursion!
 ▪ Will see how to do this next lecture