
Last Name: First: Netid:

CS 1110 Prelim 2 November 11th, 2021

This 90-minute exam has 5 questions worth a total of 100 points. Scan the whole test before starting.
Budget your time wisely. Use the back of the pages if you need more space. You may tear the pages
apart; we have a stapler at the front of the room.

It is a violation of the Academic Integrity Code to look at any exam other than your
own, look at any reference material, or otherwise give or receive unauthorized help.

You will be expected to write Python code on this exam. We recommend that you draw vertical
lines to make your indentation clear, as follows:

def foo():
if something:

do something
do more things

do something last

You should not use while-loops on this exam. Beyond that, you may use any Python feature that
you have learned about in class (if-statements, try-except, lists, for-loops, recursion and so on).

Question Points Score

1 2

2 20

3 26

4 26

5 26

Total: 100

The Important First Question:

1. [2 points] Write your last name, first name, and netid, at the top of each page.

Last Name: First: Netid:

Reference Sheet

String Operations

Operation Description

len(s) Returns: Number of characters in s; it can be 0.
a in s Returns: True if the substring a is in s; False otherwise.
a*n Returns: The concatenation of n copies of a: a+a+ · · ·+a.
s.find(s1) Returns: Index of FIRST occurrence of s1 in s (-1 if s1 is not in s).
s.count(s1) Returns: Number of (non-overlapping) occurrences of s1 in s.
s.islower() Returns: True if s is has at least one letter and all letters are lower case;

it returns False otherwise (e.g. 'a123' is True but '123' is False).
s.isupper() Returns: True if s is has at least one letter and all letters are uppper case;

it returns False otherwise (e.g. 'A123' is True but '123' is False).
s.isalpha() Returns: True if s is not empty and its elements are all letters; it returns

False otherwise.
s.isdigit() Returns: True if s is not empty and its elements are all numbers; it returns

False otherwise.
s.isalnum() Returns: True if s is not empty and its elements are all letters or numbers;

it returns False otherwise.

List Operations

Operation Description

len(x) Returns: Number of elements in list x; it can be 0.
y in x Returns: True if y is in list x; False otherwise.
x.index(y) Returns: Index of FIRST occurrence of y in x (error if y is not in x).
x.count(y) Returns: the number of times y appears in list x.
x.append(y) Adds y to the end of list x.
x.insert(i,y) Inserts y at position i in x. Elements after i are shifted to the right.
x.remove(y) Removes first item from the list equal to y. (error if y is not in x).

Dictionary Operations

Function
or Method

Description

len(d) Returns: number of keys in dictionary d; it can be 0.
y in d Returns: True if y is a key d; False otherwise.
d[k] = v Assigns value v to the key k in d.
del d[k] Deletes the key k (and its value) from the dictionary d.
d.clear() Removes all keys (and values) from the dictionary d.

Page 2

Last Name: First: Netid:

2. [20 points total] Iteration.
Implement the functions below according to their specification using for-loops. You do not
need to enforce preconditions. But pay attention to all instructions.
(a) [8 points]

def shiftkeys(d):
"""Returns a copy of d with 1 added to each key
Example: shiftkeys({1:'a',2:'b'}) returns {2:'a',3:'b'}.
Precondition: d is a dictionary whose keys are ints"""

(b) [12 points]
def collapse(ragged):

"""MODIFIES the 2d list ragged, converting each element list into its average
As a result, the 2d list will become a 1d list of floats. Note that the
elements of ragged can be lists of different sizes or even empty.
Example: If ragged is [[1.0,2.0],[3.2],[]], then collapse(ragged) converts the
list ragged into the list [1.5, 3.2, 0.0]
This is a procedure and should not return a value.
Precondition: ragged is a nonempty list whose elements are (possibly empty)
lists of floats"""

Page 3

Last Name: First: Netid:

3. [26 points total] Recursion.

Use recursion to implement the following functions. Solutions using loops will receive no credit.
You do not need to enforce the preconditions. But pay attention to all instructions.

(a) [16 points]
def merge(a,b):

""Returns the sorted merge of the sorted lists a, b.
The list returned is a copy of a and/or b.
Examples: merge([],[]) returns [] (a COPY)

merge([],[1,2]) returns [1,2] (a COPY)
merge([0,3],[1,3,4]) returns [0,1,3,3,4]

Precondition: a and b are (possibly empty) sorted lists of ints"""
HINT: You should divide-and-conquer on either a or b but NOT
both at the same time. You may NOT use sort() or similar methods/functions.

Page 4

Last Name: First: Netid:

(b) [10 points] (Solutions using loops will receive no credit)
def toevens(nums):

"""Returns a copy of nums where every odd number is increased by 1.
Example: toevens([0,1,2,3,4]) returns [0,2,2,4,4] (evens unaffected)
Precondition: nums is a (potentially empty) list of ints"""

4. [26 points total] Classes and Subclasses

The Exerpy system that you use to complete your labs is completely written in Python (using
a module/package known as Django). This was a natural choice since your lab activities are
in Python. But we actually chose it because it makes it easy for us to quickly add new ques-
tion types. Exerpy has support for a broad range of questions, including multiple choice, free
response, code snippets, and drag-and-drop vocabulary matching.

To make this possible, Exerpy has a class Question which is the parent class for every question
type. Then each type of question has its own class. So vocabulary questions are represented by
the Vocabulary class and code questions are represented by the Script class.

In this question, you will implement a simplified version of two classes from the Exerpy system.
You will implement the base class Question and the subclass Choice, which is used for multiple
choice questions. The attributes for these classes are as follows:

Question
Attribute Invariant Category
USED_INDICES list of all active question indices (ints) Class attribute
_index an int > 0 Immutable instance attribute
_text a nonempty string Mutable instance attribute

Choice (in addition to those inherited)
Attribute Invariant Category
_choices nonempty tuple of strings Mutable instance attribute
_correct int and a valid index of _choices Mutable instance attribute

Note that a valid index can be negative, as _choices[-1] is the last element of _choices.

Page 5

Last Name: First: Netid:

Instructions: On the next four pages, you are to do the following:

1. Fill in the missing information in each class header.
2. Add any necessary class attributes
3. Add getters and setters as appropriate for the instance attributes
4. Fill in the parameters of each method (beyond the getters and setters)
5. Implement each method according to the specification
6. Enforce any preconditions in these methods using asserts

We have not added headers for the getters and setters. You are to write these from scratch.
However, you are not expected to write specifications for them. For the other methods,
pay attention to the provided specifications. The only parameters are those in the preconditions.
The class Choice may not use any attribute or getter/setter inherited from Question. It may
only use super() to access overridden methods. Because we did not cover the material in time
for this exam, you should use type instead of isinstance to check type-based preconditions.
(a) [12 points] The class Question

class Question # Fill in missing part
"""A class representing a question in the lab system

Attribute USED_INDICES: A CLASS ATTRIBUTE list of all question indices.
This list starts off empty, as there are no questions to start with."""
ATTRIBUTE _index: The question index. An int > 0 (IMMUTABLE)
ATTRIBUTE _text: The question wording. A nonempty string (MUTABLE)

CLASS ATTRIBUTE. NO GETTERS OR SETTERS.

DEFINE GETTERS/SETTERS/HELPERS AS APPROPRIATE. SPECIFICATIONS NOT NEEDED.

Page 6

Last Name: First: Netid:

Class Question (CONTINUED).

def __init__ # Fill in missing part
"""Initializes a new question for the given index and text

No question can share the same index as another. On creation, the
question index is added to the class attribute USED_INDICES.

Precondition: index is an int > 0, and not already in use.
That is, index cannot be an element of USED_INDICES.
Precondition: text is a non-empty string"""

def __str__ # Fill in missing part
"""Returns a string representation of this question.

The format is '<index>. <text>'.

Example: If index is 2 and the text is 'What is your quest?',
this method will return '2. What is your quest?' """

def __eq__ # Fill in missing part
"""Returns True if self and other are equal. False otherwise.

An object is equal to this one (self) if it has the same type
and the same index. You do not need to compare text, since
indices are unique.

Precondition: NONE. other can be ANYTHING """

Page 7

Last Name: First: Netid:

(b) [14 points] The class Choice.

class Choice # Fill in missing part
"""A class representing a multiple choice question."""
ATTRIBUTE _choices: The options. A nonempty tuple of strings. (MUTABLE)
ATTRIBUTE _correct: The index of the correct answer. An int. (MUTABLE)
ADDITIONAL INVARIANT: _correct is a valid index of _choices at all times
HINT: This allows _correct to be negative as long as it is in bounds

DEFINE GETTERS/SETTERS/HELPERS AS APPROPRIATE. SPECIFICATIONS NOT NEEDED.

Page 8

Last Name: First: Netid:

Class Choice (CONTINUED).
REMEMBER: This page may not use any attributes or getters/setters from Question.

def __init__ # Fill in missing part
"""Initializes a new multiple choice question with given choices.

Precondition: index is an int > 0, and not already in use.
That is, index cannot be an element of USED_INDICES in Question.
Precondition: text is a non-empty string
Precondition: choices is a nonempty tuple of strings
Precondition: correct is an int and a valid index of choices
(OPTIONAL ATTRIBUTE; correct is -1, the last choice, by default)"""

def __str__ # Fill in missing part
"""Returns a string representation of this multiple choice question.

The format is '<index>. <text> <answer>'. For example, suppose the
question with index 2 and text 'What is your quest?' has choices
('To pass this exam.', 'To seek the Holy Grail.'). If correct is 1,
then the string is '2. What is your quest? To seek the Holy Grail.' """

Page 9

Last Name: First: Netid:

5. [26 points total] Folders and Name Resolution

Consider the two (undocumented) classes below, together with their line numbers.

1 class A(object):
2 x = 10
3 y = 20
4
5 def __init__(self,y):
6 self.z = y
7 self.x = self.f()
8
9 def f(self,x=5):

10 return x*self.y
11
12 def g(self):
13 return self.x+self.y

15 class B(A):
16 x = 20
17
18 def __init__(self,x,y):
19 self.y = x
20 super().__init__(x)
21
22 def f(self):
23 return self.x*self.y
24
25 def h(self):
26 y = self.x+self.z
27 return y+self.y

(a) [5 points] Draw the class folders in the heap for these two classes.

(b) [21 points] On the next two pages, diagram the call

> > > b = B(1,7)

You will need ten diagrams. Draw the call stack, global space and the heap. If the
contents of any space are unchanged between diagrams, you may write unchanged. You do
not need to draw the class folders from part (a).
When diagramming a constructor, you should follow the rules from Assignment 5. Remem-
ber that __init__ is a helper to a constructor but it is not the same as the constructor.
In particular, there is an important first step before you create the call frame.

Page 10

Last Name: First: Netid:

Call Frames Global Space Heap Space
1

2

3

4

5

Page 11

Last Name: First: Netid:

Call Frames Global Space The Heap
6

7

8

9

10

Page 12

