Last Name: First: Netid:

CS 1110 Prelim 2 November 19th, 2020

This 90-minute exam has 5 questions worth a total of 100 points. Scan the whole test before starting.
Budget your time wisely. Use the back of the pages if you need more space. You may tear the pages
apart; we have a stapler at the front of the room.

It is a violation of the Academic Integrity Code to look at any exam other than your
own, look at any reference material, or otherwise give or receive unauthorized help.

You will be expected to write Python code on this exam. We recommend that you draw vertical
lines to make your indentation clear, as follows:

def foo():

‘ if something:

‘ ‘ do something

‘ ‘ do more things
‘ do something last

You should not use while-loops on this exam. Beyond that, you may use any Python feature that
you have learned about in class (if-statements, try-except, lists, for-loops, recursion and so on).

Question | Points | Score
1 2
2 20
3 23
4 25
5 30
Total: 100

The Important First Question:

1. [2 points| Write your last name, first name, and netid, at the top of each page.

Last Name:

First: Netid:

Reference Sheet

String Operations

Operation Description
len(s) Returns: Number of characters in s; it can be 0.
a in s Returns: True if the substring a is in s; False otherwise.
a*n Returns: The concatenation of n copies of a: a+a+---+a.
s.find(s1) Returns: Index of FIRST occurrence of s1in s (-1 if s1 is not in s).

s.count(s1)

Returns: Number of (non-overlapping) occurrences of si in s.

s.islower ()

Returns: True if s is has at least one letter and all letters are lower case;
it returns False otherwise (e.g. 'a123' is True but '123"' is False).

s.isupper()

Returns: True if s is has at least one letter and all letters are uppper case;
it returns False otherwise (e.g. 'A123" is True but '123"' is False).

s.isalpha(Q)

Returns: True if s is not empty and its elements are all letters; it returns
False otherwise.

s.isdigit()

Returns: True if s is not empty and its elements are all numbers; it returns
False otherwise.

s.isalnum()

Returns: True if s is not empty and its elements are all letters or numbers;
it returns False otherwise.

List Operations

Operation Description
len(x) Returns: Number of elements in list x; it can be 0.
y in x Returns: True if y is in list x; False otherwise.
x.index(y) Returns: Index of FIRST occurrence of y in x (error if y is not in x).
x.count (y) Returns: the number of times y appears in list x.
x.append (y) Adds y to the end of list x.
x.insert(di,y) Inserts y at position i in x. Elements after i are shifted to the right.
x.remove (y) Removes first item from the list equal to y. (error if y is not in x).

Dictionary Operations

Function .« s
Description
or Method
len(d) Returns: number of keys in dictionary d; it can be 0.
y in d Returns: True if y is a key d; False otherwise.
dlk] = v Assigns value v to the key k in d.
del d[k] Deletes the key k (and its value) from the dictionary d.
d.clear() Removes all keys (and values) from the dictionary d.

Page 2

Last Name: First: Netid:

2. [20 points total] Iteration.

Implement the functions below according to their specification using for-loops. You do not
need to enforce preconditions.
(a) [7 points|

def sumfold(lst):
"""MODIFIES the list to contain the accumulated sum.
Each element at position i becomes the sum up to and including that position.
Example: If a = [0,1,2,3,4], then sumfold(a) changes a to [0,1,3,6,10]
Precondition: 1lst is a nonempty list of integers"""

sum = 0 # Intermedite accumulator

Mutability requires loops over positions
for pos in range(len(lst)):

sum = sum + lst[pos]

lst[pos] = sum
No return value

(b) |13 points|
def zerocols(table):
"""Returns a list of (positions of) all zero columns in the given table.
Columns identified must be all zero; the presence of one zero is not enough.
Example: zerocols([[1,0,2],[0,0,0],[3,0,4]]) returns [1]
zerocols([[0,0],[0,0]]) returns [0,1]
zerocols([[1,0],[0,2]]) returns []
Precondition: table is a nonempty rectangular 2d list of numbers"""

result = []

Loop over all columns
for pos in range(len(table[0])):
Search for non-zero value
good = True
for x in table:

if x[pos] != 0O:

| good = False

Add to accum if all O
if good:
result.append(pos)

return result

Page 3

Last Name: First: Netid:

3. [23 points total] Recursion.

Use recursion to implement the following functions. Solutions using for-loops will receive no
credit. You do not need to enforce the preconditions.
(a) [10 points|
def prefix(s):
"""Returns the prefix (identical characters at the start) length of s
Example: prefix('abc') returns 1 as the prefix is 'a'
prefix('xxxxxxyzx') returns 6 as the prefix is 'xxxxxx'
prefix('') returns O as the string is empty
Precondition: s is a (possibly empty) string of lowercase letters"""

if s == "'":
‘ return O
elif len(s) == 1:
‘ return 1

left = prefix(s[:1])
right = prefix(s[1:])

if s[0] == s[1]:
‘ return left+rght

return left

(b) [13 points| An inverted string is a dictionary whose keys are characters and whose values
are lists of positions. For example, the string 'hello' is inverted as the dictionary
{ 'n':[0], 'e':[1], '1':[2,3], 'o':[4] }
Hint: How you divide matters on this problem. Do not pull off one element at the start.
def invert(s):
"""Returns an inverted string representing s
Example: invert('abcac') returns {'a':[0,3], 'b':[1], 'c':[2,4]}.
invert('') is {}.
Precondition: s is a (possibly empty) string"""
if s == '":
return {}

left = invert(s[:-11)

Remove right to make combination easier
char = s[-1]
pos = len(s)-1

if char in left:

‘ left[char] .append(pos)
else:

| left[char] = [pos]

return left

Page 4

Last Name: First: Netid:

4. [25 points total| Folders and Name Resolution

Consider the two (undocumented) classes below, together with their line numbers.

1 |class A(object): 13 |class B(A):

2 x =5 14 x = 20

3 15

4 def __init__(self,x): 16 def __init__(self,x,y):
5 self.y = x 17 super () . __init__(y)
6 self.f(x) 18 self.y = x

7 19

8 def f(self,x): 20 def f(self,y):

9 self.x = x+x 21 | self.x = self.x-y
10 22

11 def g(self): 23 def h(self,x):

12 return 2*self.y 24 | return x+self.y//2

(a) [5 points| Draw the class folders in the heap for these two classes.

(b) [20 points| On the next two pages, diagram the call
>>> b = B(3,5)

You will need ten diagrams. Draw the call stack, global space and the heap. If the
contents of any space are unchanged between diagrams, you may write unchanged. You do
not need to draw the class folders from part (a).

When diagramming a constructor, you should follow the rules from Assignment 5. Remem-
ber that __init__ is a helper to a constructor but it is not the same as the constructor.
In particular, there is an important first step before you create the call frame.

Page 5

Last Name: First: Netid:

Call Frames Global Space The Heap
O, id1
(@) [B._init__ [17] id1
self [id1 | x[3 |
y[5]
G[B._init_ [17] id1
self [id1 | x[3 |
y[5]
A.__init__ [5]
self | idl | x| 5 |

(®[B._init__ [17] id1
self [id1 | x[3 |
y[5] y
A.__init__ [6]
self | idl | x| B |

®[B._init_ [17] id1
self [idl | x[3 |
y[5] y
A.__init__ [6]

self | idl | x| B |

B. [21]

self | idl | y| B |

Page 6

Last Name:

First: Netid:
Call Frames Global Space The Heap
(6)[B._init__ [17] id1
self [id1 | x[3 |
y[5] y
A_init__ (6 x
self | idl | x| 5 |
B.f []
self | idl | y| 5 |
(D [B._init__ [17] id1
self [id1 | x[3 |
y[5] y
A.__init__ [X
self [id1 | x| 5 |
B.f
self
B._init__ [18] id1
self [id1 | x[8 |
y[5] y
A.__init__ X
(©[B._init__ L] id1
self [id1 | x[3 |
y y [B 8]
x

Page 7

Last Name: First: Netid:

5. [30 points total| Classes and Subclasses

In this problem, you will create a class Date (which represents a year, month, day) and its
subclass DateTime which includes an hour and minute of the day.

While most of the attributes are integers, it will store the month as a 3-letter abbreviation (e.g.
"Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', or 'Dec').
Remember that 'Apr', 'Jun', 'Sep', and 'Nov' have 30 days, 'Feb' has either 28 or 29, and
all others have 31 days. The attributes of the two classes are as follows:

Date

Attribute | Invariant Category

MONTHS list of 3-letter month abbreviations in order | CLASS attribute

DAYS dictionary from months to number of days | CLASS attribute

_year int >= 2000 Immutable instance attribute
_month 3-letter string abbreviation Immutable instance attribute
_day int that is a valid day of _month Mutable instance attribute
DateTime (in addition to those inherited)

Attribute ‘ Invariant ‘ Category

_hour int in range 0..23 Mutable instance attribute
_minute int in range 0..59 Mutable instance attribute

Instructions: On the next four pages, you are to do the following:

Fill in the missing information in each class header.

Add any necessary class attributes

Add getters and setters as appropriate for the instance attributes

Fill in the parameters of each method (beyond the getters and setters)

Implement each method according to the specification.

ANl o A

Enforce any preconditions in these methods using asserts

We have not added headers for the getters and setters. You are to write these from scratch.
However, you are not expected to write specifications for them. For the other methods,
pay attention to the provided specifications. The only parameters are those in the preconditions.

The class DateTime may not use any attribute or getter/setter inherited from Date. It may
only use super () to access overridden methods.

You should enforce preconditions with assert unless you are given a specific error to use instead.
Type-based preconditions should all be managed with isinstance and not type.

Finally, there is the matter of February. In the DAYS class attribute, you should consider
February as having 28 days, and ignore leap years. However, you should not ignore leap years
(February has 29 days) when enforcing the invariant of the _day attribute. To help you with
that you are free to use the following helper function (you do not need to implement this).

def isleapyear(y):
| ""vReturns True if y is a leap year. False otherwise
‘ Precondition: y is an int >= O"""

Page 8

Last Name: First: Netid:

(a) [18 points| The class Date

class Date(object): # Fill in missing part
"""A class representing a month, day and year

Attribute MONTHS: A CLASS ATTRIBUTE list of all month abbreviations in order

Attribute DAYS: A CLASS ATTRIBUTE that is a dictionary. Keys are the strings
from MONTHS; values are days in that month ('Feb' is 28 days)"""

Attribute _year: The represented year. An int >= 2000 (IMMUTABLE)

Attribute _month: The month. A valid 3-letter string from MONTHS (IMMUTABLE)

Attribute _day: The day. An int representing a valid day of _month (MUTABLE)

CLASS ATTRIBUTES.
MONTHS = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct', 'Nov', 'Dec']

DAYS = {'Jan':31,'Feb':28, 'Mar':31, 'Apr':30, 'May':31, 'Jun':30, 'Jul':31, 'Aug':31,
'Sep':30, '0Oct':31,'Nov':30, 'Dec':31 }

DEFINE GETTERS/SETTERS/HELPERS AS APPROPRIATE. SPECIFICATIONS NOT NEEDED.
def getYear(self):

"""Returns the year of this date"""

return self._year

def getMonth(self):
"""Returns the month of this date"""
return self._month

def getDay(self):
"""Returns the day of this date"""
return self._day

def setDay(self,value):
"""Sets the day of this date

Parameter value: The new day
Precondition: value is a valid day in the month
assert isinstance(value,int)

if self._month == 'Feb' and isleapyear(self._year):
| assert value > 0 and value <= 29
else:

| assert value > 0 and value <= self.DAYS[self._month]
self._days = value

Page 9

Last Name: First: Netid:

Class Date (CONTINUED) .

def __init__(self, v, m, d): # Fill in missing part
"""Initializes a new date for the given month, day, and year

Precondition: y is an int >= 2000 for the year
Precondition: m is a 3-letter string for a valid month
Precondition: d is an int and a valid day for month m"""

assert assert isinstance(y,int)

assert y >= 2000

assert m in self.MONTHS

self. _year =y

self. _month = m

self.setDay(d) # Enforces the precondition

"""Returns a string representation of this date.

def __str__(self): # Fill in missing part

The representation is month day, year like this: 'Jan 2, 2002' """

return self._month+' '+str(self._day)+', '+str(self.year)

def __1t__(self,other): # Fill in missing part

"""Returns True if this date happened before other (False otherwise)

Precondition: other is a Date
This method causes a TypeError if the precondition is violated."""
IMPORTANT: You are limited to 20 lines. Do NOT brute force this.

if not isinstance(other,Date):
raise TypeError()

ml = Date.MONTHS.index(self.getMonth()) # self month as number
m2 = Date.MONTHS.index(other.getMonth()) # other month as number

if self.getYear() != other.getYear():

| return self.getYear() < other.getYear()
elif ml != m2:

| return ml < m2

return self.getDay() < other.getDay()

Page 10

Last Name: First: Netid:

(b) [12 points] The class DateTime.

class DateTime(Date): # Fill in missing part
"""A class representing a month, day and year, plus time of day (hours, minutes)"""
Attribute _hour: The hour of the day. An int in range 0..23 (MUTABLE)

Attribute _minute: The minute of the hour. An int in range 0..59 (MUTABLE)

DEFINE GETTERS/SETTERS/HELPERS AS APPROPRIATE. SPECIFICATIONS NOT NEEDED.
def getHour(self):

"""Returns the hour of the day"""

return self._hour

def setHour (self,value):
"""Sets the hour of the day

Parameter value: The new hour
Precondition: hour is an int in 0..23
assert isinstance(value,int)

assert value >= 0 and value < 24
self._hour = value

def getMinute(self):
"""Returns the minute of the hour"""
return self._minute

def setMinute(self,value):
"""Sets the hour of the day

Parameter value: The new hour
Precondition: hour is an int in 0..23
assert isinstance(value,int)

assert value >= 0 and value < 60
self._minute = value

Page 11

Last Name: First: Netid:

Class Date (CONTINUED) .
REMEMBER: This page may not use any attributes or getters/setters from Date.

def __init__(self, v, m, d, hr=0, mn=0) : # Fill in missing part
"""Initializes a new datetime for the given month, day, year, hour and minute

This method adds two additional (default) parameters to the initialize for
Date. They are hr (for hour) and mn (for minute).

Precondition: y is an int >= 2000 for the year

Precondition: m is a 3-letter string for a valid month

Precondition: d is an int and a valid day for month m

Precondition: hr is an int in the range 0..23 (OPTIONAL; default 0)
Precondition: mn is an int in the range 0..59 (OPTIONAL; default O)"""

super () .__init__(y,m,d)
self.setHour (hr)
self.setMinute (mn)

def __str__(self): # Fill in missing part
"""Returns a string representation of this DateTime object

The representation is 'hh:mm on month day, year' like this: '9:45 on Jan 2, 2002'
Single digit minutes should be padded with Os. Hours do not need to be padded."""

if self._minute < 10:

| time = str(self._hour)+':0'+str(self._minute)
else:

| time = str(self._hour)+':'+str(self._minute)
return time+' on '+super().__str__Q)

Page 12

