
Spring 2019 CS 1110 Prelim 2

Please turn off and stow away all electronic devices. You may not use them for any reason during
the exam. Do not bring them with you if you leave the room temporarily.

This is a closed book and notes examination. You may use the reference sheet on the last
page of the exam.

There are 5 problems. Make sure you have the whole exam.

You have 90 minutes to complete 90 points. Use your time accordingly.

Question Points Score

1 9

2 20

3 12

4 20

5 29

Total: 90

It is a violation of the Academic Integrity Code to look at any exam other than
your own, to look at any other reference material, or to otherwise give or receive
unauthorized help.

We also ask that you not discuss this exam with students who are scheduled to take
a later makeup.

Academic Integrity is expected of all students of Cornell University at all times, whether in the
presence or absence of members of the faculty. Understanding this, I declare I shall not give, use
or receive unauthorized aid in this examination.

Signature: Date

Name: NetID



1. 9 Minute Warm-up

(a) [3 points] If Python has printed "f3" 5 times, what does the call stack look like?

1 def f3():

2 print("f3")

3 print("f3")

4
5 def f2():

6 print("f2")

7 f3()

8 f3()

9 f3()

10
11 def f1():

12 print("f1")

13 f2()

14
15 f1()

Your Answer:

(b) [3 points] What is the difference between an instance attribute and a class attribute?

List all that apply:

A. An instance attribute lives in Global Space.
B. Instance attributes can be modified, but class attributes cannot.
C. Class attributes cannot be accessed by an instance of the class, but instance attributes
can be.
D. Within a given class, there can be one instance attribute named x but possibly many
class attributes named x.
E. Within a given class, there can be one class attribute named x but possibly many in-
stance attributes named x.

(c) [3 points] Suppose you have a function fun1 with the following line of code in it:

a1 = b1 * 2

Where might a1 be located? List all that apply:

A. the global space
B. the call frame for fun1
C. the call frame of the function that called fun1

D. (if fun1 is a class method) an instance attribute
E. (if fun1 is a class method) a class attribute

Page 2



2. Waldo’s Brother Max

In this question you will be asked to implement the definition of the following function in two
different ways:

def find_max(my_list):

"""

Returns the maximum integer in the integer list my_list.

Note: my_list remains unchanged.

my_list: a list of integers with at least 1 element

Examples:

find_max([0]) Returns 0

find_max([4,0,12]) Returns 12

find_max([-4,-10,-2]) Returns -2

"""

In neither part are you responsible for asserting/enforcing preconditions.

(a) [10 points] For Loops. Make effective use of a for loop to implement find max. Your
solution must use a for loop to receive points. When you have finished, step through your
code to make sure it works on the given examples.

def find_max(my_list):

Page 3



(b) [10 points] Recursion. Make effective use of a recursion to implement find max. Not
only this, we want you to use a very specific approach to the divide-and-conquer. Your
recursion should split the input list into two halves of equal length (or off by 1),
find the maximum of both halves, and then return the maximum of the two. Your solution
must use this approach in order to receive points. When you have finished, step through
your code to make sure it works on the given examples.

The spec has been copied for your convenience.

def find_max(my_list):

"""

Returns the maximum integer in the integer list my_list.

Note: my_list remains unchanged.

my_list: a list of integers with at least 1 element

Examples:

find_max([0]) Returns 0

find_max([4,0,12]) Returns 12

find_max([-4,-10,-2]) Returns -2

"""

Page 4



3. [12 points] ’Redacted’ is the Word of the Day
Implement the function redact emails according to its specification. You do not need to
assert/enforce any preconditions. Do not use recursion in your solution.

def redact_emails(email_list, token):

""" Inputs:

email_list: a list of emails. each email is a list of strings.

token: a string of length 1 or more

Modifies email_list as follows: each string containing the token is

replaced by x's. the string of x's is as long as the original string.

email_list is modified but not returned

Examples:

email_list: [["call", "me", "ASAP"],["meet", "me", "at", "3", "PM"]]

token: "me"

redacted: [["call", "xx", "ASAP"],["xxxx", "xx", "at", "3", "PM"]]

email_list: [["call", "me", "ASAP"],["meet", "me", "at", "3", "PM"]]

token: "a"

redacted: [["xxxx", "me", "ASAP"],["meet", "me", "xx", "3", "PM"]]

email_list: [[],["", "", "i", "miss", "you"], ["Hi", "please", "email", "back"]]

token: "i"

redacted: [[],["", "", "x", "xxxx", "you"], ["xx", "please", "xxxxx", "back"]]

email_list: [[],["", "", "i", "miss", "you"], ["Hi", "please", "email", "back"]]

token: "x"

redacted: [[],["", "", "i", "miss", "you"], ["Hi", "please", "email", "back"]]

...unchanged...

"""

Page 5



4. [20 points] Inheritance.

Use the templates provided to draw the
complete history of memory after the
error-free code below runs to comple-
tion. Include method names and class
variables in the class folders. Add id
#s and attributes to the object fold-
ers. If any values change as the code
is executed, show all values by crossing
out old values and putting new values
next to the crossed out ones. You do
not need to put global variables associ-
ated with the class folders in the global
space; in fact you don’t have enough
boxes in Global Space to do so. You
may not need all the templates pro-
vided. Only use as many as are needed.

1 class A(object):

2
3 x = 10

4
5 def __init__(self, n=2):

6 self.n = n

7 m = 3 * n

8 A.x += m

9 self.x = 40

10
11 class B(A):

12
13 y = 20

14 x = 30

15
16 def __init__(self, n):

17 self.n = n

18 super().__init__()

19 self.p = 2

20
21 class C(B):

22
23 def __init__(self, n):

24 z = 8

25 self.x = n

26
27 b = B(1)

Page 6



You may use this blank page for scratch work. Graders will not look at this page unless
you clearly instruct them to do so on another page.

Page 7



5. We Are Family!

Familiarize yourself with the Person class below, including helper methods add parents and
add children. (The question begins on the next page.)

Do not assert preconditions for any part of this question.

class Person(object):

""" A class to represent a person in a genealogical tree.

CLASS ATTRIBUTE:

population: tracks how many total Persons there are [int]

INSTANCE ATTRIBUTES:

first: First Name [str]

last: Last Name [str]

parents: (possibly empty) list of Person

children: (possibly empty) list of Person

"""

population = 0

def add_parents(self, parents):

"""

adds new parents to existing parents list

parents: (possibly empty) list of Person

"""

for p in parents:

self.parents.append(p)

def add_children(self, children):

"""

adds new children to existing children list

children: (possibly empty) list of Person

"""

for c in children:

self.children.append(c)

Page 8



(a) [10 points] Complete the class method init below:

def __init__(self,first,last,parents=[]):

"""

Creates a new Person with 4 instance attributes.

Updates population accordingly.

The optional parameter parents contains an initial list of

parents that should be added to a NEW parent list maintained

exclusively by this new Person. All parents need to update

their children list in response to the creation of this child.

first: first name [str]

last: last name [str]

parents: list of Person

"""

Page 9



(b) [10 points] Make effective use of recursion to complete the class method count the kidless

below. You may assume that the family tree does not have any cycles (traveling up or
down the family tree, you’ll never encounter the same Person twice).

def count_the_kidless(self):

"""

Counts the number of descendents (self, child, grandchild, etc.)

with no children. Includes self as a descendent.

Returns: an integer

Examples:

- if p1 has no children, p1.count_the_kidless() returns 1

- if p1 has two children each with exactly 2 children (who

in turn have no children), p1.count_the_kidless() returns 4

"""

Page 10



(c) [9 points] Complete the function blend below. Do not worry about preventing:
- duplicates (a Person appearing multiple times on a parent or child list)
- cycles (a Person being both someone’s descendant AND ancestor)

def blend(p1, p2):

"""

Blends the families of p1 and p2

p1: parent 1 [Person]

p2: parent 2 [Person]

p1 puts p2's children on their (p1's) children list

(p2's children get p1 as an additional parent)

p2 puts p1's children on their (p2's) children list

(p1's children get p2 as an additional parent)

Example:

- if p1 has child c1 and p2 has no children, blend(p1,p2) results

in p1 and p2 both having child c1; c1 has parents p1 and p2

"""

Page 11



Spring 2019 CS 1110 Prelim Reference Sheet

We recommend that you draw vertical lines to make your indentation clear:

def my function():

if something:

do something

do another thing

do this thing last

String methods

s.count(s1) Returns: the number of times s1 occurs in string s

s.find(s1) Returns: index of first occurrence of string s1 in string s (-1 if not found)

s.find(s1,n) Returns: index of first occurrence of string s1 in string s STARTING at
position n. (-1 if s1 not found in s from this position)

s.islower() Returns: True if s is has at least one letter and all letters are lower case;
returns False otherwise (e.g., ‘a123’ is True but ‘123’ is False).

s.isupper() Returns: True if s is has at least one letter and all letters are upper case;
returns False otherwise (e.g., ‘A123’ is True but ‘123’ is False).

s.join(slist) Returns: a string that is the concatenation of the strings in list slist

separated by string s

s.split(sep) Returns: a list of the “words” in string s, using sep as the word delimiter
(whitespace if sep not given)

s.strip() Returns: copy of string s where all whitespace has been removed from
the beginning and the end of s. Whitespace not at the ends is preserved.

List methods

lt[i:j] Returns: a new list[lt[i], lt[i+1], . . ., lt[j-1]] under ordinary
circumstances. Returns [] if i and j are not both sensible indices.

lt.append(item) Adds item to the end of list lt

lt.count(item) Returns: count of how many times item occurs in list lt

lt.index(item) Returns: index of first occurrence of item in list lt lt; raises an error
if item is not found. (There’s no “find” for lists.)

lt.index(y,n) Returns: index of first occurrence of y in list lt STARTING at position
n; raises an error if y does not occur in lt.

lt.insert(i,item) Insert item into list lt at position i

lt.pop(i) Returns: element of list lt at index i and also removes that element
from the list lt. Raises an error if i is an invalid index.

lt.remove(item) Removes the first occurrence of item from list lt; raises an error if item
not found.

Other useful functions

a in s Returns: True if the substring a is in s; False otherwise.

list(range(n)) Returns: the list [0 .. n-1]

list(filter(func, lt)) Returns: a list of elements of lt for which function func returns True

list(map(func, lt)) Returns: A list obtained by applying function func to each element in
list lt and concatenating the results of each application.

Page 12


