
PREPARING FOR PRELIM 1

CS 1110: FALL 2022

This handout explains what you have to know for the first prelim. There will be a review session with
detailed examples to help you study. To prepare for the prelim, you can (1) practice writing functions in
Python, (2) review the assignments and labs, (3) review the lecture slides, and (4) memorize terminology
listed below.

The prelim covers material up to and including material in lecture on September 29th. The test will focus
on the basics of programming in Python. It will not include for-loops as we have not yet had a dedicated
lab on this topic.

1. Exam Information

The exam will be held Thursday, October 6th. Because of the size of the class, we are split across multiple
classrooms. Rooms are assigned by the first letter of your labs name (unless you are taking a make-up). Pay
careful attention to your room assignment.

• Students with last names A – G meet in Kennedy 116 (Call Auditorium).
• Students with last names H – Z meet in Bailey Hall 101.

1.1. Review Session. There will be a review session in class on the day of the exam. This is to keep
from having to introduce new material before the exam, as well as before Fall Break. It will cover material
in this handout and explain the basic structure of the exam. It will also go over several sample problems to
help you prepare for the exam.

2. Content of the Exam

Because there is so much to remember, we like to give everyone a rough overview of what is going to be on
the exam. As a general rule, both of our prelims will consist of 5 questions, plus the additional “write down
your name and net-id” question (you would be amazed at how many people lose points for this question).
Each questions will be taken from one of the following topics:

String Slicing. You will be given a specification for a function that takes a string as an argument, though
it may have additional arugments. You will use your knowledge of string slicing to implement that function.
This question will test skills that you developed in Assignment 1.

Call Frames. You will be given one more function definitions and a function call. You will be asked to
draw the frame for the call. You may be asked to draw each executed step of the frame. You may be asked
to draw a call stack of multiple frames. This question will test skills that you developed in Assignment 2.
Any input is fair game. It may have an object as an input. It might have a list as an input.

Functions on Mutable Objects. You will be given a type for a mutable object (e.g. a class). The
attributes of the mutable object will have invariants that limit what values can and cannot be assigned to
them. You will then be given a function specification that you will need to implement; your implementation
must respect the invariants. This question will test skills that you developed in Assignment 3.

1



Testing and Debugging. You will be given a function specification and asked to develop test cases for it.
You may be asked to implement traces to follow program flow (for an if-statement or a try-except). You
might even be asked to debug a function. This question will test skills that you developed in Labs 6 and 10
and Assignments 1 and 3. You should also look at Lectures 6, 7, and 11 for control-flow tracing.

Terminology. You will have several questions that cover terminology and Python syntax. It may be short
answer, multiple choice, or some combination of both. For this part of the test, we recommend that you
review the text as well as the lecture slides. In addition, we have a provided a list of important terminology
below.

In addition to these five topics, you may wish to look at exams from previous years. However, as a word of
warning, these exams sometimes cover material that we have not chosen to cover this semester
(generally to your advantage). Furthermore, the Spring semester draws call frames differently than the Fall
semester does, so those questions will be different.

3. Terminology and Important Concepts

Below, we summarize the terms you should know. You should be able to define any term below clearly and
precisely. If it is a Python statement, you should know its syntax and how to execute it.

Argument. An argument is an expression that appears within the parentheses of a function call. When
executing this function call, Python evaluates the expression and copies its values into the appropriate
parameters.

Example: In the function call round(a+b,1) both a+b and 1 are arguments.

Assert Statement. A statement of the form

assert <boolean-expression>

or

assert <boolean-expression>, <string-expression>

If the boolean expression is true, an assert statement does nothing. If it is false, it produces an error, stopping
the entire program. In the second version of assert, it uses the string expression after the comma as its error
message.

Example:

assert 1 > 2, 'My Message'

This command crashes Python (because 1 is not greater than 2), and provides 'My Message' as the message.

Assignment Statement. A statement of the form

<variable> = <expression>

If the variable on the left hand side does not exist yet, it creates the variable and stores the value of the
expression inside. If the variable does exist, it replaces the old value with the value of the expression.

2



Attribute. Attributes are variables that are stored inside of an object. Attributes can often be modified,
though not always the case. Attributes typically have invariants which are rules specifying how the attribute
may be modified.

Example: If the variable color stores an RGB object, then color.red is the red attribute in this object.

Call Frame. A call frame is a formal representation of that Python uses when you execute a function call.
It contains the name of the function as well as all parameters and local variables. It has also an instruction
counter that tracks the next line in the function that is to be executed. A call frame is deleted (e.g. erased)
as soon as the call completes.

Call Stack. The call stack is all of the call frames of the currently executing function calls (e.g. the main
function call and all of its helper functions). These call frames are arranged in a stack, with the original
function up top, and the most recent function call at the bottom. If the current function calls a helper
function, you add a new frame to the bottom. When a helper function completes, you remove the call frame
from the stack.

Class. A class is any type that is not built-in to Python (unlike int, float, bool, and str which are
built-in). Like functions, classes are defined in modules, and we have to import the module to use values
(e.g. objects) of that type.

Conditional Statement. A statement of the form

if <boolean-expression>:
<statement>
...
<statement>

or

if <boolean-expression>:
<statement>
...
<statement>

else:
<statement>
...
<statement>

The first form is executed as follows: if the boolean expression is true, execute the statements underneath;
otherwise skip over them. The second form is executed as follows: if the boolean expression is true, execute
the statements underneath the if; otherwise execute the statements underneath the else.

Example:

if 2 < 1:
x = 3

else:
x = 4

The variable x has value 4 when this conditional statement is executed.

There are additional forms of conditional statements using the keyword elif that were shown in class.
3



Constructor. A constructor is a function that creates a mutable object. It puts the object in heap space,
and returns the name of the object (e.g. the folder name) so you can store it in a variable. We have not yet
seen how to define a constructor, but we know how to use one. A constructor has the same name as the type
of the object you wish to create. Like fruitful functions, they are typically expressions and not statements.

Example constructor call (within a statement) : color = RGB(255,0,255)

Expression. An expression is Python code that produces a value. Expressions cannot be used by themselves;
they must be put inside of a statement. Examples of expressions are values (e.g. 1, 'Hello'), complex
expressions (e.g. 1+2, 'Hello '+reprn) and fruitful functions or methods (e.g. round(n,0), s.find('a'))

Function. A function is a parameterized sequence of statements, whose execution performs some task.
There are three kinds of functions: procedure, fruitful function, constructor. We also consider methods to
be functions. See the definition of method for the difference.

A function should be followed by a docstring (""" . . . """) that says what the function does. This is called
the specification. The specification has to be precise and clear. A potential user of the function should be
able to look only at the comment and the list of parameters to know how to call the function; they should
not have to look at the body of the function.

Fruitful Function. A fruitful function is one that performs some task and returns a value; because they
return values they are typically expressions, and not statements. The statement return <value> is used to
terminate execution of a function call and return <value>.

Example:

def max(x,y):
"""Returns: the maximum of x and y
Precondition: x, y are floats
if x >= y:

return x
return y

Example fruitful function call (within a statement) : z = 1 + max(x,y);

Function Call. : A function call is an invocation of the function with arguments. When a function is
called, these arguments are placed into the parameter variables, and the body of the function is executed.
A function call is associated with a call frame which stores the parameters and local variables as the body
is being executed.

Function Header. : The first line of a function definition. It includes the keyword def, the function name,
parentheses, any parameters (if appropriate), and a colon.

Example:

def max(x,y):

Global Space. Global space is area of memory that stores any variable that is not defined in the body of a
function. These variables include both function names and modules names, though it can include variables
with more traditional values. Variables in global space remain until you explicitly erase them or until you
quit Python.

4



The Heap. The Heap is the area of memory that stores mutable objects (e.g. folders). It also stores function
definitions, and the contents of modules imported with the import command. Folders in heap space remain
until you explicitly erase them or until you quit Python. You cannot access heap space directly. You access
them with variables in global space or in a call frame that contain the name of the object in heap space.

Literal. A literal is an expression, which when evaluated, evaluates to itself. Hence it is an expression that
is also a value.

Example: The number 1.0 is a literal for a float, while 1 is a literal for an int. The literals for bool are True
and False.

Method. Methods are functions that are stored inside of an object. They can either be procedures or fruitful
functions. They are called by placing the object variable and a dot before the function name.

Example: find(s1) is a method in all string objects. If the variable s is a string, then we call this method
on s using the syntax s.find(s1).

Object. A (mutable) object is a value whose type is a class. Objects typically contain attributes, which are
variables inside of the object which can potentially be modified. In addition, objects often have methods,
which are functions that are stored inside of the object (as opposed to be stored inside of a module).

Parameter. See variable.

Print Statement. A statement of the form

print(<string-expression>)

The expression evaluate to a value of type string. In this course, we use print statements for debugging and
not much else.

Procedure. A procedure is a function that performs some task (and does not return a value). Procedures
may be used as statements.

Example:

def greet(n):
"""Print a greeting to name
Precondition: name is a string"""
print('Hello '+name+'!')

Example procedure call : greet('Walker')

Return Statement. A statement of the form

return <expression>

It is placed at the end of a fruitful function to return a value

Scope. The scope of a variable name is the set of places in which it can be referenced. Global variables
may be referenced by any function that which is either defined in the same module as the global variable, or
which imports that module. The scope of a parameter or local variable is the body of the function in which
it is defined. We do not worry about the scope of attributes for right now.

5



Specification. A description of what a function should do. It should include (1) preconditions on the
arguments, (2) the return value of the function (if it is a fruitful function, and any other details on what the
function does. A specification is typically written as a docstring comment.

Statement. A statement is a command for Python to do something. We have seen the following five
statements so far: assignment statements, return statements, assert statements, conditional-statements, and
try-except statements. In addition, any procedure may be used as a statement.

Try-Except Statement. A statement of the form

try:
<statement>
...
<statement>

except:
<statement>
...
<statement>

Python executes all of the statements underneath try. If there is no error, then Python does nothing and
skips over all the statements underneath except. However, if Python crashes while inside the try portion,
it recovers and jumps over to except, where it executes all the statements underneath there.

Example:

try:
print('A')
x = 1/0
print('B')

except:
print('C')

This code prints out 'A', but crashes when it divides 1/0. It skips over the remainder of the try (so it does
not print out 'B'). It jumps to the except and prints out 'C'.

Type. A type is a set of values and the operations on them. The basic types are types int, float, bool,
and str. The type list is like str, except that its contents are mutable. For more advanced types, see the
definition of class.

Variable. A variable is a named box that can contain a value. We change the contents of a variable via an
assignment statement. A variable is created when it is assigned for the first time. We have seen four types
of variables in this class: parameters, local variables, global variables, and attributes.

A parameter is a variable in the parentheses of a function header. For example, in the function header

def after_space(s):

the parameter is the variable s.

A local variable is a variable which is not a parameter, but which is first assigned in the body of a function.
For example, in the function definition

def before_space(s):
pos = s.find(' ')
return s[:pos]

pos is a local variable.
6



A global variable is a variable which is assigned inside of a module, but outside of the body or header of any
function. The variable FREEZING_C that we saw in the module temperature.py is an example of a global
variable.

An attribute is a variable that is contained inside of a mutable object. In a point object, the attributes are
x, y, and z. In the RGB objects from Assignment 2, the attributes are red, green, and blue.

7


	1. Exam Information
	1.1. Review Session

	2. Content of the Exam
	String Slicing
	Call Frames
	Functions on Mutable Objects
	Testing and Debugging
	Terminology

	3. Terminology and Important Concepts
	Argument
	Assert Statement
	Assignment Statement
	Attribute
	Call Frame
	Call Stack
	Class
	Conditional Statement
	Constructor
	Expression
	Function
	Fruitful Function
	Function Call
	Function Header
	Global Space
	The Heap
	Literal
	Method
	Object
	Parameter
	Print Statement
	Procedure
	Return Statement
	Scope
	Specification
	Statement
	Try-Except Statement
	Type
	Variable


