
Last Name: First: Netid:

CS 1110 Prelim 1 October 19th, 2021

This 90-minute exam has 6 questions worth a total of 100 points. Read over the whole test before
starting. Budget your time wisely. Use the back of the pages if you need more space. You may tear
the pages apart; we have a stapler at the front of the room.

It is a violation of the Academic Integrity Code to look at any exam other than your
own, to look at any other reference material, or to otherwise give or receive unautho-
rized help.

You will be expected to write Python code on this exam. We recommend that you draw vertical
lines to make your indentation clear, as follows:

def foo():
if something:

do something
do more things

do something last

You should not use loops or recursion on this exam. Beyond that, you may use any Python feature
that you have learned in class (if-statements, try-except, lists), unless directed otherwise.

Question Points Score

1 2

2 8

3 20

4 23

5 25

6 22

Total: 100

The Important First Question:

1. [2 points] Write your last name, first name, and netid, at the top of each page.



Last Name: First: Netid:

Reference Sheet

Throughout this exam you will be asked questions about strings and lists. You are expected to
understand how slicing works. In addition, the following functions and methods may be useful.

String Functions and Methods

Expression
or Method

Description

len(s) Returns: number of characters in s; it can be 0.
a in s Returns: True if the substring a is in s; False otherwise.
s.count(s1) Returns: the number of times s1 occurs in s
s.find(s1) Returns: index of the first character of the FIRST occurrence of s1 in s

(-1 if s1 does not occur in s).
s.find(s1,n) Returns: index of the first character of the first occurrence of s1 in s

STARTING at position n. (-1 if s1 does not occur in s from this position).
s.rfind(s1) Returns: index of the first character of the LAST occurrence of s1 in s

(-1 if s1 does not occur in s).
s.isalpha() Returns: True if s is not empty and its elements are all letters; it returns

False otherwise.
s.isdigit() Returns: True if s is not empty and its elements are all numbers; it returns

False otherwise.
s.isalnum() Returns: True if s is not empty and its elements are all letters or numbers;

it returns False otherwise.
s.islower() Returns: True if s is has at least one letter and all letters are lower case;

it returns False otherwise (e.g. 'a123' is True but '123' is False).
s.isupper() Returns: True if s is has at least one letter and all letters are upper case;

it returns False otherwise (e.g. 'A123' is True but '123' is False).
s.lower() Returns: A copy of s with all letters lower case.
s.upper() Returns: A copy of s with all letters upper case.

List Functions and Methods
Expression
or Method

Description

len(x) Returns: number of elements in list x; it can be 0.
y in x Returns: True if y is in list x; False otherwise.
x.count(y) Returns: the number of times y occurs in x
x.index(y) Returns: index of the FIRST occurrence of y in x

(an error occurs if y does not occur in x).
x.index(y,n) Returns: index of the first occurrence of y in x STARTING at position n

(an error occurs if y does not occur in x).
x.append(y) Adds y to the end of list x.
x.insert(i,y) Inserts y at position i in list x, shifting later elements to the right.
x.remove(y) Removes the first item from the list whose value is y

(an error occurs if y does not occur in x).

The last three list methods are all procedures. They return the value None.

Page 2



Last Name: First: Netid:

2. [8 points total] Short Answer.

(a) [5 points] What is the definition of a type in Python? List at least four examples of types
built into Python.

(b) [3 points] Which of the following two expressions produces an error (none, one, or both)?
False and (5 / 0) (5 / 0) or True
Explain why this is the case.

3. [20 points] Call Frames.

Consider the following function definitions.

1 def double(a):
2 """Returns copy of a but doubled
3 Pre: a is a list"""
4 b = a[:]
5 c = a+b
6 return c
7

8 def mystery(a):
9 """Modifies a and returns something

10 Pre: a is a nonempty list"""
11 a[-1] = a[0]
12 return double(a)
13
14

Assume p = [1, 2, 3] is a global variable referencing a list in the heap, as shown on the next
page. On the next two pages, diagram the evolution of the call

q = mystery(p)

Diagram the state of the entire call stack for the function mystery when it starts, for each line
executed, and when the frame is erased. If any other functions are called, you should do this
for them as well (at the appropriate time). This will require a total of eight diagrams, not
including the (pre-call) diagram shown.

You should draw also the state of global space and the heap at each step. You can ignore the
folders for the function definitions. Only draw folders for lists or objects. You are also allowed
to write “unchanged” if no changes were made to either global space or the heap.

Page 3



Last Name: First: Netid:

Call Stack Global Space The Heap

p id1
id1

list

0 1
1 2
2 3

Page 4



Last Name: First: Netid:

Call Stack Global Space The Heap

Page 5



Last Name: First: Netid:

4. [23 points total] Testing and Debugging.

(a) [9 points] The function expand takes a date in the compact form '9/21/21' and expands
it into the longer form 'Sep 21st, 2021'. All months are abbreviated to three letters,
but everything else is spelled out. Two digit years before 50 are assumed to be in the 21st
century (20XX). Otherwise, the year is assumed to be in the 20th century (19XX). We will
consider 2000 to be technically in the 21st century for this problem.
There are at least three bugs in the code below. These bugs are potentially spread
across multiple functions. We have added several print statements throughout the code,
and shown the results on the next page. Using this information as a guide, identify and
fix the three bugs on the next page. Remember that specifications are always correct, and
any deviation between code and a specification is a bug. You must explain your fixes.

1 def expand(s):
2 """Returns english date expansion of s
3
4 Years before 50 are 20XX. Others are 19XX.
5
6 Precond: s a string for a VALID 'm/d/y'.
7 m and d are either one or two digits.
8 y is always two digits"""
9 div1 = s.find('/')

10 print('div1 is '+str(div1)) # WATCH
11 div2 = s.find('/',div1+1)
12 print('div2 is '+str(div2)) # WATCH
13 m = int(s[:div1])
14 print('m is '+str(m)) # WATCH
15 y = int(s[div2+1:])
16 print('y is '+str(y)) # WATCH
17
18 m = monthize(m)
19 print('month is '+str(m)) # WATCH
20 d = dayize(s[div1+1:div1+3])
21 print('day is '+str(d)) # WATCH
22 y = yearize(y)
23 print('year is '+str(y)) # WATCH
24
25 return m+' '+d+', '+y
26
27 def monthize(m):
28 """Returns the month abbrev for m
29
30 Precond: 1 <= m <= 12 is an int"""
31 # Combined TRACE and WATCH
32 print('monthize on '+str(m))
33 # The list is NOT a bug
34 items = ['Jan','Feb','Mar','Apr','May',
35 'Jun','Jul','Aug','Sep','Oct',
36 'Nov','Dec']
37 return items[m-1]
38
39
40

41 def dayize(s):
42 """Returns s with the correct suffix
43
44 Precond: s a str of one or two digits"""
45 # Combined TRACE and WATCH
46 print('dayize on '+s)
47 if len(s) == 2 and s[0] == '1':
48 print('teens day') # TRACE
49 suff = 'th'
50 elif s[-1] == '1':
51 print('ends in 1') # TRACE
52 suff = 'st'
53 elif s[-1] == 2:
54 print('ends in 2') # TRACE
55 suff = 'nd'
56 elif s[-1] == '3':
57 print('ends in 3') # TRACE
58 suff = 'rd'
59 else:
60 print('other ending') # TRACE
61 suff = 'th'
62
63 return s+suff
64
65 def yearize(y):
66 """Returns 4 digit year for y (as str)
67
68 Years before 50 are 20XX. Others are 19XX.
69
70 Precond: 0 <= y <= 99 is an int"""
71 # Combined TRACE and WATCH
72 print('yearize on '+str(y))
73 if y < 50:
74 print('< 50') # TRACE
75 pref = '20'
76 if y > 50:
77 print('> 50') # TRACE
78 pref = '19'
79
80 return pref+str(y)

Page 6



Last Name: First: Netid:

Tests:
> > > expand('9/22/19') # 'Sep 22nd, 2019'
div1 is 1
div2 is 4
m is 9
y is 19
monthize on 9
month is Sep
dayize on 22
other ending
day is 22th
yearize on 19
< 50
year is 2019
Sep 22th, 2019

> > > expand('12/7/41') # 'Dec 7th, 2041'
div1 is 2
div2 is 4
m is 12
y is 41
monthize on 12
month is Dec
dayize on 7/
other ending
day is 7/th
yearize on 41
< 50
year is 2041
Dec 7/th, 2041

> > > expand('12/15/50') # 'Dec 15th, 1950'
div1 is 2
div2 is 5
m is 12
y is 50
monthize on 12
month is Dec
dayize on 15
teens day
day is 15th
yearize on 50
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "debug.py", line 22, in expand

y = yearize(y)
File "debug.py", line 80, in yearize

return pref+str(y)
UnboundLocalError: unknown variable 'pref'

First Bug:

Second Bug:

Third Bug:

Page 7



Last Name: First: Netid:

(b) [10 points] Consider the following function specification:

def replace(s,a,b):
"""Returns the string s with all instances of character a replaced by b.

Example: replace('banana', 'n', 't') returns 'batata'

Precond: s, a, b are all strings with no characters other than lowercase
letters. a is exactly one letter."""

Do not implement this function. Instead, we want you to write at least six test cases
below. By a test case, we just mean an input and an expected output; you do not need
to write an assert_equals statement. For each test case, you should explain why it is
substantially different from the others.

(c) [4 points] Do not implement the function specified below. Instead, use assert state-
ments to enforce the precondition. You do not need to provide error messages.

def isnetid(s):
"""Returns True if the user identifier s is a registered netid

Precond: s is a nonempty string of only letters and digits. All letters
must be lowercase. The string s cannot start with a digit."""

Page 8



Last Name: First: Netid:

5. [25 points] String Slicing.

Implement the function below. You may not use a for-loop to implement this function
(and a for-loop is not necessary). Simply use the functions and methods provided on the
reference page. Pay close attention to the examples to better understand the function.

def initials(name):
"""Returns (up to three) initials for the given name

A word is a (sub)string composed of only letters. A name is a sequence of words
separated by (single) spaces. The initials of a name are the first letters of
each word. If there are more than three words, this function only chooses the
initials of the first two words, and the last word. The initials returned are
all lower case.

Examples: initials('Walker') returns 'w'
initials('Walker White') returns 'ww'
initials('Walker McMillan White') returns 'wmw'
initials('Daniel Michael Blake Day Lewis') returns 'dml'

Precond: name is a string of letters and spaces. There are no adjacent
spaces. The name does not begin or end with a space."""

Page 9



Last Name: First: Netid:

6. [22 points total] Objects and Functions.

Remember the class RGB from Assignment 3. Objects of this class have three attributes: red,
green,and blue. These values must be integers between 0 and 255; assigning any other value to
them will result in an error. RGB has a fourth attribute: alpha, which has the same restrictions.
This means that when you create an RGB object, the proper constructor call is RGB(r,g,b,a)
(do not worry about introcs for this question). We ignored this attribute in Assignment 3,
but we will use it here.

The alpha attribute is used for color composition. Each pixel on your computer monitor can
only show only one color at a time. If we want to show multiple images on top of each other,
we have to combine the colors together.

(a) [8 points] The simplest form of color composition is straight addition. We add the two red
values to get the new red, the two green values to get the new green, and so on. The result
of this is very similar to mixing colors in primary school, as shown below.

Note that the attribute invariants can never be violated. If adding together two color
results in an attribute that is greater than 255, we use the value of 255 instead. With this
in mind, implement the following procedure according to the specification.

def add_color(color1,color2):
"""Adds the colors color1 and color2, storing the result in color1.

Addition is on each atttribute (including alpha) as described above.
This function is a PROCEDURE and has no return value.

Preconditions: color1 and color2 are RGB objects."""

Page 10



Last Name: First: Netid:

(b) [14 points] A more popular form of color composition is alpha-blending. The attribute
alpha represents the amount of transparency of the color on top. An alpha of 255 means
the color is completely opaque, while an alpha of 0 is completely transparent.
To perform alpha-blending, you must convert the red, green, blue, and alpha values to
the range 0 to 1, just as in Assignment 3. You then apply the following formula:

R′ = α1R1 + (1− α1)R2 Combine red attributes of colors 1 and 2
G′ = α1G1 + (1− α1)G2 Combine green attributes of colors 1 and 2
B′ = α1B1 + (1− α1)B2 Combine blue attributes of colors 1 and 2
α′ = α1 + (1− α1)α2 Combine alpha attributes of colors 1 and 2

In the formula above, R1, G1, . . . are the attributes of the first color, R2, G2, . . . are
the attributes of the second color, and R′, G′, . . . are the attributes of the new color.
Remember to convert back to the range 0..255 when done, rounding to the nearest integer.
In practice, alpha-blending looks like the picture below.

def alpha_blend(color1,color2):
"""Returns a new color blending (via the formula above) color1 and color2.

Preconditions: color1 and color2 are RGB objects."""

Page 11


