
Last Name: First: Netid:

CS 1110 Prelim 1 October 18th, 2020

This 90-minute exam has 5 questions worth a total of 100 points. Read over the whole test before
starting. Budget your time wisely. Use the back of the pages if you need more space. You may tear
the pages apart; we have a stapler at the front of the room.

It is a violation of the Academic Integrity Code to look at any exam other than your
own, to look at any other reference material, or to otherwise give or receive unautho-
rized help.

You will be expected to write Python code on this exam. We recommend that you draw vertical
lines to make your indentation clear, as follows:

def foo():
if something:

do something
do more things

do something last

You should not use loops or recursion on this exam. Beyond that, you may use any Python feature
that you have learned in class (if-statements, try-except, lists), unless directed otherwise.

Question Points Score

1 2

2 23

3 26

4 24

5 25

Total: 100

The Important First Question:

1. [2 points] Write your last name, first name, and netid, at the top of each page.



Last Name: First: Netid:

Reference Sheet

Throughout this exam you will be asked questions about strings and lists. You are expected to
understand how slicing works. In addition, the following functions and methods may be useful.

String Functions and Methods

Expression
or Method

Description

len(s) Returns: number of characters in s; it can be 0.
a in s Returns: True if the substring a is in s; False otherwise.
s.count(s1) Returns: the number of times s1 occurs in s
s.find(s1) Returns: index of the first character of the FIRST occurrence of s1 in s

(-1 if s1 does not occur in s).
s.find(s1,n) Returns: index of the first character of the first occurrence of s1 in s

STARTING at position n. (-1 if s1 does not occur in s from this position).
s.isalpha() Returns: True if s is not empty and its elements are all letters; it returns

False otherwise.
s.isdigit() Returns: True if s is not empty and its elements are all numbers; it returns

False otherwise.
s.isalnum() Returns: True if s is not empty and its elements are all letters or numbers;

it returns False otherwise.
s.islower() Returns: True if s is has at least one letter and all letters are lower case;

it returns False otherwise (e.g. 'a123' is True but '123' is False).
s.isupper() Returns: True if s is has at least one letter and all letters are uppper case;

it returns False otherwise (e.g. 'A123' is True but '123' is False).

List Functions and Methods

Expression
or Method

Description

len(x) Returns: number of elements in list x; it can be 0.
y in x Returns: True if y is in list x; False otherwise.
x.count(y) Returns: the number of times y occurs in x
x.index(y) Returns: index of the FIRST occurrence of y in x

(an error occurs if y does not occur in x).
x.index(y,n) Returns: index of the first occurrence of y in x STARTING at position n

(an error occurs if y does not occur in x).
x.append(y) Adds y to the end of list x.
x.insert(i,y) Inserts y at position i in list x, shifting later elements to the right.
x.remove(y) Removes the first item from the list whose value is y

(an error occurs if y does not occur in x).

The last three list methods are all procedures. They return the value None.

Page 2



Last Name: First: Netid:

2. [23 points total] Objects and Functions.

Remember the class RGB from Assignment 3. Objects of this class have three attributes: red,
green, and blue (we will ignore alpha for this question). These values must be integers between
0 and 255; assigning any other value to them will result in an error.

(a) [9 points] When we multiply two colors together, we do it attribute by attribute. That is,
we first convert the attributes to the range 0..1 (as in the assignment) and then multiply
each attribute like this

C ′ = C1 ∗ C2 Multiply the color attributes C1 and C2

where Ci is each one of red, green,or blue. We then convert each value to the range
0..255 when done (remembering to round the result). With that in mind, implement the
function below.
NOTE: You do not need to worry about importing introcs. Assume it is available.

def multiply(color1,color2):
"""Returns a new RGB object that is the product of color1 and color2

The original colors should not be modified

Preconditions: color1 and color2 are RGB objects"""

Page 3



Last Name: First: Netid:

(b) [14 points] The opposite of multiplication is division. To divide two colors, we again con-
vert the attributes to the range 0..1 (as in the assignment) and then use the formula

C ′ =


0 if C1 = 0

C1/C2 if C1/C2 ≤ 1

1 otherwise

where Ci is each one of red, green,or blue, converting back to the range 0..255 when
done (remembering to round the result). Using this formula, implement the function below.

Note: In mathematics, a/0 is ∞ whenever a > 0. That is implicit in the formula above.

def divide(color1,color2):
"""MODIFIES color1 to store the result of division.

This function divides color1 by color2 and stores the result in color1.

Preconditions: color1 and color2 are RGB objects"""

Page 4



Last Name: First: Netid:

3. [26 points total] Testing and Debugging.

(a) [10 points] The function romanize takes a integer 1..99 and converts it into a Roman
numeral such as I, VII, or XIX. Roman numerals are represented as strings with the letters
'I', 'V', 'L', 'X', and 'C'.
There are at least three bugs in the code below. These bugs are potentially spread
across multiple functions. To help find the bugs, we have added several print statements
throughout the code, and show the results on the next page. Using this information as a
guide, identify and fix the three bugs on the next page. Your fixes may include more than
one line of code. You should explain your fixes.

1 def romanize(n):
2 """Returns the Roman numeral for n
3
4 Precond: 0 < n < 100 is an int"""
5 tens = ''
6 ones = ''
7 if n >= 50:
8 print('More than 50') # TRACE
9 tens = numeralL(n//10)

10 elif n >= 10:
11 print('More than 10') # TRACE
12 tems = numeralX(n//10)
13 print('tens = '+repr(tens)) # WATCH
14
15 ones = romanize1to9(n % 10)
16 print('ones = '+repr(ones)) # WATCH
17
18 def romanize1to9(n):
19 """Returns the Roman numeral for n
20
21 Precond: 0 < n < 10 is an int"""
22 # Combined TRACE and WATCH
23 print('romanize1to9: n = '+repr(n))
24 if n < 5:
25 print('Less than 5') # TRACE
26 return romanize1to4(n)
27 elif n < 9:
28 print('Between 5 and 8') # TRACE
29 return 'V'+romanize1to4(n-5)
30 else:
31 print('Equal to 9') # TRACE
32 return 'IX'
33
34 def romanize1to4(n):
35 """Returns the Roman numeral for n
36
37 Precond: 0 < n < 5 is an int"""
38 # Combined TRACE and WATCH
39 print('romanize1to4: n = '+repr(n))
40 values = ['I','II','III','IV']
41 choiceI = values[n-1]
42 # WATCH
43 print('choiceI = '+repr(choiceI))
44 return choiceI

45
46
47
48 def numeralL(n):
49 """Returns Roman numeral for tens value
50
51 The value n is the tens DIGIT of the
52 number. So numeralL(5) is 'L'.
53
54 Precond: 5 <= n < 10 is an int"""
55 # Combined TRACE and WATCH
56 print('numeralL: n = '+repr(n))
57 if n < 9:
58 print('Less than 90') # TRACE
59 return 'L'+numeralX(n-5)
60 else:
61 print('Equals to 90') # TRACE
62 return 'XC'
63
64
65
66
67
68 def numeralX(n):
69 """Returns Roman numeral for tens value
70
71 The value n is the tens DIGIT of the
72 number. So numeralL(3) is 'XXX'.
73
74 When n is 0, it returns the empty
75 string (to be compatible w/ numeralL)
76
77 Precond: 0 <= n < 5 is an int"""
78 # Combined TRACE and WATCH
79 print('numeralX: n = '+repr(n))
80 values = ['','X','XX','XXX','XL']
81
82 choiceX = values[n]
83 # WATCH
84 print('choiceX = '+repr(choiceX))
85 return choiceX
86
87
88

Page 5



Last Name: First: Netid:

Hint: Some bugs cannot be fixed with just one line. You might need to add a conditional.

Tests:

> > > romanize(14) # Expected: 'XIV'
More than 10
numeralX: n = 1
choiceX = 'X'
tens = ''
romanize1to9: n = 4
Less than 5
romanize1to4: n = 4
choiceI = 'IV'
ones = 'IV'
IV

> > > romanize(75) # Expected: 'LXXV'
More than 50
numeralL: n = 7
Less than 90
numeralX: n = 2
choiceX = 'XX'
tens = 'LXX'
romanize1to9: n = 5
Between 5 and 8
romanize1to4: n = 0
choiceI = 'IV'
ones = 'VIV'
LXXVIV

> > > romanize(60) # Expected: 'LX'
More than 50
numeralL: n = 6
Less than 90
numeralX: n = 1
choiceX = 'X'
tens = 'LX'
romanize1to9: n = 0
Less than 5
romanize1to4: n = 0
choiceI = 'IV'
ones = 'IV'
LXIV

First Bug:

Second Bug:

Third Bug:

Page 6



Last Name: First: Netid:

(b) [10 points] Consider the specification below
def count_adjacent(a,b):

"""Returns the number of adjacent pairs of b inside of the string a.

An adjacent pair just means that two copies of b appear next to each other
in a. For example, if b = 'b' it appears twice as an adjacent pair in the
string 'abbcbbdb'.

Preconditions: a and b are both nonempty strings of lowercase letters.

Do not implement this function. Instead, we want you to write at least six test cases
below. By a test case, we just mean an input and an expected output; you do not need
to write an assert_equals statement. For each test case, you should explain why it is
substantially different from the others.

Page 7



Last Name: First: Netid:

(c) [6 points] Do not implement the function specified below. Instead, use assert state-
ments to enforce the precondition. Furthermore, each the assert statement should produce
one of the three error messages shown below
> > > after_space(13)
AssertionError: 13 is not a string.
> > > after_space('abc')
AssertionError: 'abc' has no spaces.
> > > after_space(' abc')
AssertionError: ' abc' has an illegal space.

def after_space(s):
"""Returns the part of the string after the first space in s

Precond: s a string with at least one space.
Furthermore, s does not start or end with a space."""

4. [24 points] Call Frames.

Consider the following function definitions.

1 def fold_front(p):
2 """Returns sum of first 2 items
3 This function modifies the list
4 Pre: p is a list, len(p) >= 2"""
5 p[0]= p[0]+p[1]
6 return p[0]
7

8 def sum_back(q):
9 """Returns sum of last 2 items

10 Pre: q is a list, len(q) >= 2"""
11 r = q[-2:]
12 result = fold_front(r)
13 return result
14

Assume p = [3, 7, 1, 5] is a global variable referencing a list in the heap, as shown on the
next page. On the next two pages, diagram the evolution of the call

r = sum_back(p)

Diagram the state of the entire call stack for the function sum_back when it starts, for each
line executed, and when the frame is erased. If any other functions are called, you should do
this for them as well (at the appropriate time). This will require a total of eight diagrams, not
including the (pre-call) diagram shown.

You should draw also the state of global space and the heap at each step. You can ignore the
folders for the function definitions. Only draw folders for lists or objects. You are also allowed
to write “unchanged” if no changes were made to either global space or the heap.

Page 8



Last Name: First: Netid:

Call Stack Global Space The Heap

p id1
id1

list

0 3
1 7
2 1
3 5

Page 9



Last Name: First: Netid:

Call Stack Global Space The Heap

Page 10



Last Name: First: Netid:

5. [25 points] String Slicing.
Implement the function below. You may need to use several of the functions and methods on
the reference page. Pay close attention to the examples to better understand the function.

def swap_first(word,a,b):
"""Returns a copy of word with first instance each of a and b swapped

If either a or b is not a substring of word, then word is unchanged.
If a and b overlap inside of word, then the word is also unchanged.

Examples:
swap_first('aBcD','B','c') returns 'acBD'
swap_first('aBcD','c','B') returns 'acBD'
swap_first('aBcD','x','c') returns 'aBcD'
swap_first('aBCdeF','BC','de') returns 'adeBCF'
swap_first('aBCdeF','BC','Cd') returns 'aBCdeF'

Preconditions: word, a, and b are all non-empty strings"""

Page 11


