PREPARING FOR THE FINAL EXAM

CS 1110: FALL 2022

This handout explains what you have to know for the final exam. Most of the exam will include topics from
the previous two prelims. We have uploaded the solutions to each of these exams into CMS. Just click on
the link for each exam.

There are potentially two new problems on this exam: while-loops and generators. While while loops are a
common topic for the final exam, the only time we have ever put generators on the exam is the 2021 exam.
In fact, that exam had two new topics: generators and coroutines. We did not cover coroutines this year,
so they are not on the exam.

1. EXAM INFORMATION

The exam will be held Tuesday, December 13th from 2:00-4:30 am. Barton Hall. As many of you are
aware, this is a huge room. It will be set up with tables, three to a table. We will occupy the entire room.
Because we are all in the same area, we are not asking you to sort yourself by last name.

Review Sessions. Unlike the prelims, there will be multiple review sessions for this final. There is a total
of seven review sessions, each lasting one hour. You are free to attend as few or as many as you wish.

The review sessions will all be held in either Call Auditorium or Statler Auditorium. The review session
topics are as follows:

Tuesday, December 6*": Call Auditorium

e Session 1: Call Frames and Diagramming Objects (Yuki Wang)
e Session 2: Classes and Subclasses (Tiffany Sarver)

e Session 3: Exceptions and Try-Except (Gonzalo Gonzalez-Pumariega)

Wednesday, December 7": Call Auditorium

e Session 4: Lists and Sequences (Luke Bernick)

e Session 5: Recursion (Valeria Marques Valdivia)
Thursday, December 8t!: Statler Auditorium

e Session 6: Generators (Walker White)
e Session 7: Open Question Session (Walker White)

2. ExaMm Toprics

The final exam will last 2 and a half hours, and will have seven questions (after the traditional first question
requiring your name and net-id). This makes it two more questions than a normal prelim. These seven
questions are chosen as follows:



Class Implementation and Object Diagrams. This question will be similar to Problems 4 and 5 from
the last prelim (now as a single question). You will be expected to finish the implementation of an incomplete
class. You will then be given a sequence of assignment statements regarding this class; you are to diagram
the memory representation (e.g. heap space, global space, etc.) for these statements.

We will not require you to understand any of the advanced features like properties or class methods.

Call Frames. You will be given the definition of one or more functions. You will be expected to draw the
call frame (for a single function) or a call stack (for more than one function). The question might ask you to
draw a call frame/stack at a single point in time or as it evolves over time. Look at Problem 3 from the first
prelim. You should be prepared to answer this question for a recursive function, such as the one in Problem
6 on the Fall 2018 final.

Recursion/Iteration. You will be given the specification of a function that requires iteration and/or
recursion. You will be asked to implement that function. This question will be similar to Problems 2 and 3
from the second prelim. Please review all of the recursion questions on the previous exams.

Multidimensional-Lists. We have not had an exam question about tables. But you now have a lot of
experience with them in Assignments 6 and 7. We can guarantee that there will be a question like this on
the final. To study for this question, you should look at Problem 4 on the Fall 2018 final, as well as Problem
4 on the Fall 2019 final. We will also have more examples at the lists review session on Wednesday.

Generators. This is a relatively new topic for the exam. We covered it for the first time in 2020, and 2021
was the first year to feature it on a final exam (together with coroutines, which are not part of this year).
With that said, these questions are not that hard, as you are simply writing loops where you textttyield
instead of an accumulator. Keep in mind that we might ask you to write a generator that requires a while
loop, however. We recommend that you do all of the optional activities in Lab 24.

Testing, Debugging, and Exceptions. You should review Problem 4 from the first prelim. You should
also look at Problem 6 from the Fall 2017 final. As with that problem, we may ask you to write a small
amout of code either handling an error in a try-except block, or raising a custom error type.

Short Answer and Poutporri. This section will be similar to the first question from the first prelim. It
will have short questions that do not belong anywhere else, focusing primarily on terminology.

3. TERMINOLOGY AND IMPORTANT CONCEPTS

Here, for your convenience is the list of terminology from the past two exams, as well as the new terminology
since the last prelim. You should know the following terms, backward and forward. Wishy-washy definitions
will not get much credit. Learn these not by reading but by practicing writing them down, or have a friend
ask you these and repeat them out loud. You should be able to write programs that use the concepts defined
below, and you should be able to draw objects of classes and frames for calls.

Accumulator. An accumulator is a fancy name for a variable in a for-loop that stores information computed
in the for-loop and which will be still available when the for-loop is complete.

Example: In the for loop

‘ total = 0

‘ for x in range(5):

‘ ‘ total = total + x

the variable total is an accumulator. It stores the sum of the values 0..4.
2



Assert Statement. A statement of the form

assert <boolean-expression>

or

assert <boolean-expression>, <string-expression>

If the boolean expression is true, an assert statement does nothing. If it is false, it produces an error, stopping
the entire program. In the second version of assert, it uses the string expression after the comma as its error
message.

Ezxample:
assert 1 > 2, 'My Message'

This command crashes Python (because 1 is not greater than 2), and provides 'My Message as the error
message.

Attribute. Attributes are variables that are stored inside of an object. Instance attributes belong to an
object or instance. Instance attributes are created by assignment statement that prefaces the object name
before the period. They are typically created in the class initializer.

Class attributes belong to the class. They are created by an assignment statement that prefaces the class
name before the period. They are also created by any assignment statement in the class definition that is
outside of a method definition.

It is impossible to enforce invariants on attributes as any value can be stored in an attribute at any time.
Therefore, we prefer to make attributes hidden (by starting their name with an underscore), and replacing
them with getters and setters.

Example: If the variable color stores an RGB object, then the assignment color.red = 255 alters the red
instance attribute. The assignment RGB.x = 1 would create a class attribute x.

Attribute Invariant. See invariant.

Bottom-Up Rule. This is the rule by which Python determines which attribute or method definition to
use (when the attribute is used in an expression, or the method is called). It first looks in the object folder.
If it cannot find it there, it moves to the class folder for this object. It then follows the arrows from child
class to parent class until it finds it. If Python reaches the folder for object (the superest class of all) and
still cannot find it, it raises an error.

If the attribute or method is in multiple folders, it uses the first one that it finds.

Call Frame. A call frame is a formal representation of that Python uses when you execute a function call.
It contains the name of the function as well as all parameters and local variables. It has also an instruction
counter that tracks the next line in the function that is to be executed. A call frame is deleted (e.g. erased)
as soon as the call completes.

Call Stack. The call stack is all of the call frames of the currently executing function calls (e.g. the main
function call and all of its helper functions). These call frames are arranged in a stack, with the original
function up top, and the most recent function call at the bottom. If the current function calls a helper
function, you add a new frame to the bottom. When a helper function completes, you remove the call frame
from the stack.



Class. A class is any type that is not built-in to Python (unlike int, float, bool, and str which are
built-in). A value of this type is called an object.

Class Definition. This is a template or blueprint for the objects (or instances) of the class. A class defines
the components of each object of the class. All objects of the class have the same components, meaning they
have the same attributes and methods. The only difference between objects is the values of their attributes.
Using the blueprint analogy, while many houses (objects) can be built from the same blueprint, they may
differ in color of rooms, wallpaper, and so on.

In Python, class definitions have the following form:

class <classname>(<superclass>):

‘ <class specification>
<getters and setters>

| <initializer definition>

‘ <method definitions>

In most cases, we use the built-in class object as the super class.
Class Invariant. See invariant.

Constructor. A constructor is a function that creates a object for a class. It puts the object in heap space,
and returns the name of the object (e.g. the folder name) so you can store it in a variable. A constructor
has the same name as the type of the object you wish to create.

When called, the constructor does the following:

o It creates a new object (folder) of the class, which is empty.

e It puts the folder into heap space.

e [t executes the initializer method __init__ defined in the body of the class. In doing so, it
— Passes the folder name to that parameter self
— Passes the other arguments in order
— Executes the commands in the body of __init__

e When done with __init__ it returns the object (folder) name as final value of expression.

There are no return statements in the body of __init__; Python handles this for you automatically.

Ezample constructor call (within a statement) : color = RGB(255,0,255)

Example __init__ definition:

def __init__(self,x,y):
‘ self.x = x
‘ self.y =y

Default Argument. A default argument is a value that is given to a parameter if the user calling the
function or method does not provide that parameter. A default argument is specified by wording the
parameter as an assignment in the function header. Once you provide a default argument for a parameter,
all parameters following it in the header must also have default arguments.

Ezxample:

def foo(x,y=2,z=3):



In this example, the function calls foo(1), foo(1,0), foo(1,0,0), and foo(1,z=0) are all legal, while
foo() is not. The parameter x does not have default arguments, while y and z do.

Encapsulation. Encapsulation is the process of hiding parts of your data and implementation from users
that do not need access to that parts of your code. This includes restricting access to attributes via getters
and setters, but it also includes the usage of hidden methods as well. This process makes it easier for you
to make changes in your own code without breaking the code of anyone who is using your class. See the
definitions of interface and implementation.

Exception. An exception is an object that stores the stack trace and and error message for when Python
crashes. You can create an exception object by calling its constructor, but that will not crash Python. To
crash Python, you must combine the exception with a raise statement.

Getter. A getter is a special method that returns the value of an instance attribute (of the same name)
when called. It allows the user to access the attribute without giving the user permission to change it. It is
an important part of encapsulation.

Ezxample: If _minutes is an instance attribute in class Time, then the getter would be

class Time(object):

def getMinutes(self):

‘ """Returns the minutes attribute
‘ ‘ return self._minutes

nnn

Generator. A generator is a special kind of function for creating an iterable. It is defined by placing a yield
statement inside the function body. Calling a generator function returns an iterable object that uses this
body to produce its elements. You call the next function to iterate through these elements. For example,
for the generator

def range2(n):

‘ """Generates the squares 0..(n-1)*(n-1)"""
‘ for x in range(n):

‘ ‘ yield x*x

you would access the first two elements of the generator range (4) with the code

gen = range2(4)
a = next(gen)
b = next(gen)

Global Space. Global space is area of memory that stores any variable that is not defined in the body of a
function. These variables include both function names and modules names, though it can include variables
with more traditional values. Variables in global space remain until you explicitly erase them or until you
quit Python.

The Heap. The heap or heap space is the area of memory that stores mutable objects (e.g. folders). It also
stores function definitions, the contents of modules imported with the import command, as well as class
folders. Folders in the heap remain until you explicitly erase them or until you quit Python. You cannot
access the heap directly. You access them with variables in global space or in a call frame that contain the
name of the object in heap space.

Immutable Attribute. An immutable attribute is a hidden attribute that has a getter, but no setter. This
implies that a user it not allowed to alter the value of this attribute. It is an important part of encapsulation.
5



Implementation. An implementation is a collection of Python code for a function, module, or class)
that satisfies a specification. This code may be changed at any time as long as it continues to satisfy the
specification.

In the case of a function, the implementation is limited to the function body. In the case of a class,
the implementation includes the bodies of all methods as well as any hidden attributes or methods. The
implementation for a module is similar to that of a class.

Inheritance. Inheritance is the process by which an object can have a method or attribute even if that
method or attribute was not explicitly mentioned in the class definition. If the class is a subclass, then any
method or attribute is inherited from the superclass.

Interface. The interface is the information that another user needs to know to use a Python feature, such
as a function, module, or class. The simplest definition for this is any information displayed by the help()
function.

For a function, the interface is typically the specification and the function header. For a class, the interface
is typically the class specification as well as the list of all unhidden methods and their specifications. The
interface for a module is similar to that of a class.

Instance. This is a synonym for an object. An object is an instance of a class.

Invariant. An invariant is a statement about an attribute that must always be true. It can be like a
precondition, in that prevents certain types of values from being assigned to the attribute. It can also be a
relationship between multiple attributes, requiring that when one attribute is altered, the other attributes
must be altered to match.

is. The is operator works like == except that it compares folder names, not contents. The meaning of the
operator is can never be changed. This is different from ==, whose meaning is determined by the special
operator method __eq__. If == is used on an object that does not have a definition for method __eq__, then
== and is are the same.

isinstance. The function call isinstance(ob,C) returns True if object ob is an instance of class C. This
is different than testing the type of an object, as it will return True even if the type of ob is a subclass of C.

Iterable. An iterable type is the type of any value that may be used in a for-loop. Examples include lists
string, and dictionaries.

Iterator. An iterator is an iterable that may only be used once inside of a for-loop. Once it is used, you
have to recreated if you want to use it a second time. You can also use the function next to step through
the elements one at a time. Files and web pages are examples of iterators in Python.

List. A list is a mutable sequence that can hold values of any type. Lists are represented as a sequence
of values in square braces (e.g. a1, as,...,a,]). A list can also hold other lists as well; this is how Python
represents mutli-dimensional lists and matrices. For example, [[1,2],[3,4]] is a 2x2 list in Python. See Lecture
13 for more information on multi-dimensional lists.



Method. Methods are functions that are stored inside of an object. They are define just like a function is
defined, except that they are (indented) inside-of a class defintion.

Ezample method toSeconds () :

class Time(object):

‘ """Class with attributes minutes, hours"""

‘ def toSeconds(self):

‘ ‘ """Returns the total seconds of this object"""
‘ ‘ return 60*self.hours+self.minutes

Methods are called by placing the object variable and a dot before the function name. The object before
the dot is passed to the method definition as the argument self. Hence all method definitions must have at
least one parameter.

Ezxample: If t is a time object, then we call the method defined above with the syntax t.toSeconds(). The
object t is passed to self.

Object. An object is a value whose type is a class. Objects typically contain attributes, which are variables
inside of the object which can potentially be modified. In addition, objects often have methods, which are
functions that are stored inside of the object.

Operator Overloading. Operator overloading is the means by which Python evaluates the various operator
symbols, such as +, *, /, and the like. The name refers to the fact that an operator can have many different
“meanings” and the correct meaning depends on the type of the objects involved.

In this case, Python looks at the class or type of the object on the left. If it is a built-in type, it uses the
built-in meaning for that type. Otherwise, it looks for the associated special method (beginning and ending
with double underscores) in the class definition.

Overriding a Method. In a subclass, one can redefine a method that was defined in a superclass. This
is called overriding the method. In general, the overriding method is called. To call an overridden method
method of the superclass, use the super function as follows.

super () .method(...)

where method is the name of the method being overridden.

Raise Statement. A raise statement a statement of the form
raise exception

where exception is a expression for an exception object (e.g. either a constructor call to make a new
exception, or a variable storing an existing exception). The raise statement immediately crashes Python and
stores the current stack trace in the exception object.

Scope. The scope of a variable name is the set of places in which it can be referenced. Global variables
may be referenced by any function that which is either defined in the same module as the global variable, or
which imports that module. The scope of a parameter or local variable is the body of the function in which
it is defined. We do not worry about the scope of attributes for right now.

Sequence. A sequence is a type that represents a fix-length list of values. Examples of sequences are lists,
strings, and tuples.



Setter. A setter is a special method that can change the value of an instance attribute (of the same name)
when called. The purpose of the setter is to enforce any invariants. The docstring of the setter typically
mentions the invariants as a precondition.

Ezample: If _minutes is an instance attribute in class Time, then the setter would be

class Time(object):
def setMinutes(self,value):
‘ """Set _minutes attribute to value

|

‘ Precondition: value is int in range 0..59"""
‘ assert type(value) == int

‘ assert 0 <= value and value < 60

‘ self. _minutes = value

Specification, Class. A class specification is description of the purpose of a class and how to use it. A
class specification typically describes what entity the class is supposed to represent. Class specifications are
often written using docstrings and include the class invariant.

Specification, Function (or Method). A function specification is a description of what a function should
do. Tt should include (1) preconditions on the arguments, (2) the return value of the function (if it is a fruitful
function, and any other details on what the function does. A function specification is typically written as a
docstring comment.

Statement. A statement is a command for Python to do something. We have seen the following five
statements so far: assignment statements, return statements, assert statements, conditional-statements, and
try-except statements. In addition, any procedure may be used as a statement.

Subclass. A subclass D is a class that extends another class C. This means that an instance of D inherits
(has) all the attributes and methods that an instance of C has, in addition to the ones declared in D. In
Python, every user-defined class must extend some other class. If you do not explicitly wish to extend
another class, you should extend the built-in class called object (not to be confused with an object, which
is an instance of a class). The built-in class object provides all of the special methods that begin and end
with double underscores.

Tuple. A tuple is identical to a list except that it is immutable. The contents cannot be removed, expanded,
or otherwise altered. Tuples are represented as a sequence of values in parentheses (e.g. (a1,as,...,a,) ).

Try-Except Statement. This is a statement of the form
try:
‘ <statements>

except:
| <statements>

Python executes all of the statements underneath try. If there is no error, then Python does nothing and
skips over all the statements underneath except. However, if Python crashes while inside the try portion,
it recovers and jumps over to except, where it executes all the statements underneath there.

8



Ezxample:

try:

| print('A")

| x = 1/0
print('B")

except:
print('C")

This code prints out 'A', but crashes when it divides 1/0. It skips over the remainder of the try (so it does
not print out 'B'). It jumps to the except and prints out 'C'.

There is an alternate version of try-except that only recovers for certain types of errors. It has the form

try:

‘ <statements>
except <error-class>:
<statements>

Python executes all of the statements underneath try. If there is no error, then Python does nothing and
skips over all the statements underneath except. However, if Python crashes while inside the try portion,
it checks to see if the error object generated has class <error-class>. If so, it jumps over to except, where
it executes all the statements underneath there. Otherwise, the error propagates up the call stack where it
might recover in another except statement or not at all.

Ezxample:

try:

| print('A")
x =1/0

‘ print('B")

except ZeroDivisionError:
print('C")

This code prints out 'A, but crashes when it divides 1/0. The execution skips over the remainder of the try
(so it does not print out 'B). Since the error is indeed a ZeroDivisionError, it jumps to the except and
prints out 'C.

Suppose, on the other hand, the try-except had been

try:

| print('A")
x = 1/0
print('B")

except AssertionError:
print('C")

In this case, the code prints out 'A, but crashes when it divides 1/0 and does not recover.

Type. A type is a set of values and the operations on them. The basic types are types int, float, bool,
and str. The type list is like str, except that its contents are mutable. For more advanced types, see the
definition of class.

Variable. Depending on how you wish to think about it, a variable is a name with associated value or a
named box that can contain a value. We change the contents of a variable via an assignment statement. A
variable is created when it is assigned for the first time. We have seen four types of variables in this class:
global variables, local variables, parameters, and attributes.

9



A global variable is a variable which is assigned inside of a module, but outside of the body or header of any
function. The variable FREEZING_C that we saw in the module temperature.py is an example of a global
variable. Global variables last as long as Python continues to run.

A local variable is a variable which is not a parameter, but which is first assigned in the body of a function.
For example, in the function definition

def before_space(s):
‘ pos = s.find(' ")
return s[:pos]

pos is a local variable. Local variables only exist in the context of a call frame.

A parameter is a variable in the parentheses of a function header. For example, in the function header
def after_space(s):

the parameter is the variable s. Parameters also only exist in the context of a call frame.

An attribute is a variable that is contained inside of a mutable object. In a point object, the attributes are
%, v, and z. In the RGB objects from Assignment 2, the attributes are red, green, and blue.

Yield Statement. A yield statement is a statement which temporarily pauses the execution of a generator.
It produces the next value in the iterator associated with the generator.

10



	1. Exam Information
	Review Sessions

	2. Exam Topics
	Class Implementation and Object Diagrams
	Call Frames
	Recursion/Iteration
	Multidimensional-Lists
	Generators
	Testing, Debugging, and Exceptions
	Short Answer and Poutporri

	3. Terminology and Important Concepts
	Accumulator
	Assert Statement
	Attribute
	Attribute Invariant
	Bottom-Up Rule
	Call Frame
	Call Stack
	Class
	Class Definition
	Class Invariant
	Constructor
	Default Argument
	Encapsulation
	Exception
	Getter
	Generator
	Global Space
	The Heap
	Immutable Attribute
	Implementation
	Inheritance
	Interface
	Instance
	Invariant
	is
	isinstance
	Iterable
	Iterator
	List
	Method
	Object
	Operator Overloading
	Overriding a Method
	Raise Statement
	Scope
	Sequence
	Setter
	Specification, Class
	Specification, Function (or Method)
	Statement
	Subclass
	Tuple
	Try-Except Statement
	Type
	Variable
	Yield Statement


