
Spring 2019 CS 1110 Final Exam Solutions

Please turn o↵ and stow away all electronic devices. You may not use them for any reason during

the exam. Do not bring them with you if you leave the room temporarily.

This is a closed book and notes examination. You may use the 2-sided reference sheet at the
back of the exam.

There are 7 problems. Make sure you have the whole exam.

You have 150 minutes to complete 120 points. Use your time accordingly.

Question Points Score

1 9

2 16

3 20

4 14

5 22

6 22

7 17

Total: 120

It is a violation of the Academic Integrity Code to look at any exam other than
your own, to look at any other reference material, or to otherwise give or receive
unauthorized help.

We also ask that you not discuss this exam with students who are scheduled to take
a later makeup.

Academic Integrity is expected of all students of Cornell University at all times, whether in the

presence or absence of members of the faculty. Understanding this, I declare I shall not give, use

or receive unauthorized aid in this examination.

Signature: Date

Name: NetID

1. Try, Try Again

(a) [3 points] If Python has just finished printing "SMILE!" for the 5th time and done nothing

more, what does the call stack look like?

1 def f3():

2 print("SMILE!")

3 print("SMILE!")

4
5 def f2():

6 print("SMILE!")

7 f3()

8 print("SMILE!")

9 f3()

10 f3()

11
12 def f1():

13 print("SMILE!")

14 f2()

15
16 f1()

Correct Answer: C

(b) [3 points] Suppose that fun1 is a class method for the class C and it has the following

line of code in it:

a1 = b1 * 2

Where might the variable b1 that was referred to in this line of code be located?

A. the global space

B. the call frame for fun1 List all that apply: A,B

C. the call frame of the function that called fun1

D. an instance/object attribute of an object of type C

E. a class attribute of class C

(c) [3 points] Consider a Person class with attributes children (a list of children) and n male

and n female with the class invariant: n male + n female == len(children)

Think about how one would implement the class method add child(self, child, is male).

What is true of this invariant?

A. If the invariant is ever not true, Python will throw an error.

B. It must be true after every line of add child executes.

C. It must be true before and after add child executes.

D. A and B

E. B and C

F. A and C

G. A, B, and C Correct Answer: C

Page 2

2. [16 points] Keep it Classy. Use the diagram on the right to show the state of Global Space,

Class Folders, and Object folders after the code below finishes executing. You do not need to

draw the call frames. This code runs without error.

1 class A():

2 x = 1

3
4 def __init__(self, n):

5 self.y = n

6 A.x += 1

7
8 class B(A):

9 x = 10

10 y = 2

11
12 def __init__(self, n):

13 sum = self.y

14 super().__init__(n)

15 sum += self.y

16 self.y = sum

17 self.x = n

18
19 a = A(3)

20 b = B(5)

Page 3

3. [20 points] Another way to find Max. The drawing below shows the state of memory after
executing lines 1-34 of the code, ignoring class folders for simplicity. Update the drawing,
adding any call frame(s) or changes resulting from executing line 35. If you cross out a

value or call frame, make sure it is still legible.

1 class Person():

2 """ A class representing a person

3 in a 1-parent world."""

4
5 def __init__(self,first,last,parent):

6 """

7 Creates a new Person with 3

8 instance attributes.

9
10 first: non-empty str of letters

11 last: non-empty str of letters

12 parent: a Person or None

13 """

14 self.first = first

15 self.last = last

16 self.parent = parent

17
18 def count(self, name):

19 """

20 Counts ancestors (incl. self) with

21 first name matching parameter name.

22
23 Returns: an integer

24 """

25 count = 0

26 if self.first == name:

27 count = 1

28 if self.parent != None:

29 count += self.parent.count(name)

30 return count

31
32 p1 = Person("Waldo", "Emerson", None)

33 p2 = Person("Max", "Planck", p1)

34 p3 = Person("Sylvia", "Plath", p2)

35 count = p3.count("Max") # EXECUTE THIS!

Page 4

4. [14 points] More than a Person. The definition of the Person class from the previous question

is copied here for your convenience. Define a subclass of Person called Student. A Student

has the attributes of a Person plus one additional attribute, netID.

class Person():

""" A class representing a person

in a 1-parent world."""

def __init__(self,first,last,parent):

"""

Creates a new Person with 3

instance attributes.

first: non-empty str of letters

last: non-empty str of letters

parent: a Person or None

"""

self.first = first

self.last = last

self.parent = parent

netID is not a parameter to any init method;

it is a string that is created at initialization by

concatenating 3 things:

1. the lower-case first letter of the first name

2. the lower-case first letter of the last name

3. a unique number across all students rep-

resenting when the Student was created.

(Note: this is a simplification of how Cornell

actually assigns your netID a number.)

Examples:

The very first student at Cornell, Ezra Cornell,

has netID "ec1".

The second student at Cornell, Pearl Buck, has

netID "pb2".

The third student at Cornell, Martha Pollack,

has netID "mp3".

Your subclass should make use of the Person class functionality and avoid code redundancy.

Do not worry about enforcing preconditions, writing comments, or docstrings.

class Student(Person):

count = 0

def __init__(self,first,last,parent):

super().__init__(first,last,parent)

Student.count += 1

self.netID = first[0].lower()+last[0].lower()+str(Student.count)

Page 6

5. The Sorted Hat. In this question you will consider two approaches to implementing the

function is sorted, which determines whether a list of integers b is sorted (in ascending order)

or not. In neither part are you responsible for asserting/enforcing preconditions.

(a) [12 points] While Loops and Loop Invariants. This version is implemented using a

while loop. You are given the precondition, postcondition, the loop invariant, and the

structure of the while loop. You must provide the initialization, the loop condition, and

the loop body.

def is_sorted(b):

"""

Returns: True if b is sorted in ascending order, False otherwise

b: a list of integers with at least 1 element; remains unchanged

Examples:

is_sorted([3]) Returns True

is_sorted([3,3]) Returns True

is_sorted([3,4]) Returns True

is_sorted([-4,1,-12]) Returns False

"""

PRE: b is a list of integers with at least 1 element

TASK #1: initialize these 2 variables so that the loop

invariant is true at the start

sorted_this_far = True

k = 0

INV: sorted_this_far is True if b[0..k] is sorted, otherwise False

TASK #2: provide the loop condition so that the loop

terminates as soon as it knows the list is not sorted

Also, make sure you do not inspect past the end of the list

while (sorted_this_far and k < len(b)-1):

TASK #3: provide the loop body

sorted_this_far = b[k] <= b[k+1]

k = k + 1

POST: sorted_this_far is True if b is sorted, otherwise False

TASK #4: what should this function return?

return sorted_this_far

Page 7

(b) [10 points] Recursion. Make e↵ective use of recursion to provide a second implemen-

tation of is sorted. Your solution must use recursion in order to receive points. When

you have finished, step through your code to make sure it works on the given examples.

The spec has been copied for your convenience.

def is_sorted(b):

"""

Returns: True if b is sorted in ascending order, False otherwise

b: a list of integers with at least 1 element; remains unchanged

Examples:

is_sorted([3]) Returns True

is_sorted([3,3]) Returns True

is_sorted([3,4]) Returns True

is_sorted([-4,1,-12]) Returns False

"""

if len(b) == 1:

return True

return b[0] <= b[1] and is_sorted(b[1:])

Page 8

6. Shop till you drop! For this question, you will answer questions about and also help complete

a new class called Product.

class Product():

"""An instance represents an item that can be sold. """

SALES_TAX_RATE = 0.04

def __init__(self, name, price, quantity, tax_exempt):

"""A new product item called "name" with 4 attributes:

name: a non-empty str, e.g., 'Milk'

price: a float > 0.0

quantity: a non-negative (but possibly 0) int indicating

how many of these items are in stock

tax_exempt: a bool indicating whether sales tax is added

to the purchase price of this item or not

"""

assert type(name) == str

assert len(name) > 0

self.name = name

assert type(price) == float

assert price > 0.0

self.price = price

assert type(quantity) == int

assert quantity >= 0

self.quantity = quantity

assert type(tax_exempt) == bool

self.tax_exempt = tax_exempt

(a) [10 points] Complete the init method above according to its specification. Be sure to

assert all of the stated preconditions.

(b) [2 points] Why is the attribute SALES TAX RATE in all caps?

Answer in 1 sentence and be succinct. Irrelevant statements will cost you points.

All caps indicates that this attribute’s value should be considered a constant and never be

changed.

Page 9

(c) [4 points] This page continues the Product class definition from the previous page.

Complete the str method below according to its specification.

def __str__(self):

"""

Returns: a [str] representation of the Product, including all

4 attributes separated by commas, in a string form. The price

should have a dollar sign. Don't worry about extending the

price to exactly 2 decimal places.

Example: "Milk, $3.0, 10, True"

"""

return self.name+", $"+str(self.price)+", "+\

str(self.quantity)+", "+str(self.tax_exempt)

(d) [4 points] Complete the eq method below according to its specification.

def __eq__(self, other):

"""Returns: True if other is a Product and both self and other

have the same name, price, and tax-exempt status. False otherwise.

"""

return isinstance(other,Product) and \

self.name == other.name and \

self.price == other.price and \

self.tax_exempt == other.tax_exempt;

(e) [2 points] You aren’t sure whether your eq method is being called or not. Maybe you

gave it the wrong name? Maybe the underscores are wrong? You’re not sure. Explain

how you could modify eq above so that you could find out whether eq ever gets

called. Your solution should work without modifying any other aspects of the Product

class.

Place a print statement in the first line of the body of the method. Something like

print("eq was called!"). If the print statement never appears you know your method

is not getting called. If you see it appear on the screen you know it is.

Page 10

7. What’s in store for you? Do not start this question until you have given the previous

question a serious attempt. This question introduces a Store class; Stores contain Products.

(a) [12 points] List version. Complete the stock method below according to its specifica-

tion. You do not need to assert any preconditions.

class Store():

"""An instance represents a named store with goods to sell

INSTANCE ATTRIBUTES:

name: the name of the store [str], Example: "Aldi"

goods: a list of Product that the store has in stock """

def __init__(self, name):

"""Creates a new store called "name" with 2 attributes:

name: a non-empty str, e.g. 'Aldi'

goods: a (possibly empty) list of Product """

Implementation left out; you do not need to complete it

def stock(self, p):

""" p: a Product to be added to the store

- If p is NOT already in the store, add p to the

store's goods.

- If p IS already there, increase the store's products's

inventory (quantity) by the quantity in the parameter p.

Using "in" to test if p is already on the list WILL NOT WORK.

Instead, check each element in goods for equality with p,

making use of the equals method you wrote for Product. """

making use of the equals method you wrote for Product. """

found = False

for g in self.goods:

if g == p:

g.quantity += p.quantity

found = True

break # speeds it up; not necessary for correctness

if not found:

self.goods.append(p)

Page 11

(b) [5 points] Dictionary version. Did you notice on the previous page how tedious it was

to check every element in the store to see whether a particular product was present? This

page presents an alternate definition of Store in which goods is a dictionary, not a list.

Re-implement the stock method below. The specification has changed slightly because

goods is now a dictionary, not a list. You do not need to assert any preconditions. You

may find the Dictionary Operations on the Reference Sheet helpful.

class Store():

"""An instance represents a named store with goods to sell

INSTANCE ATTRIBUTES:

name: the name of the store [str], Example: "Aldi"

goods: a dictionary keeping track of inventory.

Each key is a str (the name of the Product). Note: we can

no longer keep inventory for two Products that have the

same name but different prices or tax-exemption status.

Each value is a Product.

Example:

s = Store("Aldi")

p1 = Product("Milk", 3.0, 10, True);

s.goods[p1.name] = p1 # overwrites any existing Product w/ same name

s.goods["Milk"] = p1 # alternative to the previous line """

init implementation omitted for space. You do not need to complete it.

def stock(self, p):

""" p: a Product to be added to the store

- If a Product with the same name as p is NOT already in the

store, add p to the store's goods.

- If a Product with the same name as p IS already there, ignore

any price/exemption difference; increase the store's products's

inventory (quantity) by the quantity in the parameter p.

Using "in" to test if p is already in the dictionary WORKS! """

if p.name in self.goods:

v = self.goods[p.name]

v.quantity += p.quantity

else:

self.goods[p.name] = p

Page 12

