Announcements

• Labs 17 & 18 due Friday & Monday, respectively
• Next week’s discussion sections ➔ office hours for A6 and Prelim 2
• Final Exam on May 21st 1:30-4pm. Your assigned exam session (in-person or online) will be given in CMS tomorrow. Submit a “regrade request” in CMS by May 12 if you have a legitimate reason for requesting a change.

Algorithms for Search and Sort

• Well known algorithms
 ▪ focus on reviewing programming constructs (while loop) and analysis
 ▪ will not use built-in methods such as index, insert, sort, etc.
• Today we’ll discuss
 ▪ Linear search
 ▪ Binary search
 ▪ Insertion sort
• More on sorting next lecture
• More on the topic in next course, CS 2110!

Search Algorithms

• Search for a target x in a list v
• Start at index 0, keep checking until you find it or until no more elements to check

Searching in a List (Q)

Suppose another list is twice as long as v. The expected “effort” required to do a linear search is:

A. Squared
B. Doubled
C. The same
D. Halved
E. I don’t know

How do you search for a word in a dictionary? (NOT linear search)

To find the word “tanto” in my Spanish dictionary…

while dictionary is longer than 1 page:
 Open to the middle page
 if first entry comes before “tanto”:
 Rip* and throw away the 1st half
 else:
 Rip* and throw away the 2nd half

* For dramatic effect only—don’t actually rip your dictionary! Just pretend that the part is gone.
Repeated halving of “search window”

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>3000 pages</td>
</tr>
<tr>
<td>After 1 halving</td>
<td>1500 pages</td>
</tr>
<tr>
<td>After 2 halvings</td>
<td>750 pages</td>
</tr>
<tr>
<td>After 3 halvings</td>
<td>375 pages</td>
</tr>
<tr>
<td>After 4 halvings</td>
<td>188 pages</td>
</tr>
<tr>
<td>After 5 halvings</td>
<td>94 pages</td>
</tr>
<tr>
<td>After 12 halvings</td>
<td>1 page</td>
</tr>
</tbody>
</table>

Binary Search

- Repeatedly halve the “search window”
- An item in a sorted list of length \(n \) can be located with just \(\log_2 n \) comparisons.
- “Savings” is significant!

\[
\begin{array}{|c|c|}
\hline
n & \log_2(n) \\
\hline
100 & 7 \\
1000 & 10 \\
10000 & 13 \\
\hline
\end{array}
\]

Binary Search: \(\text{target } x = 70 \)

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
i: & 0 & v[mid] & \text{is not } x \\
mid: & 5 & v[mid] & < x \\
j: & 11 & \text{So throw away the left half...} \\
\hline
\end{array}
\]

Binary Search: \(\text{target } x = 70 \)

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
i: & 6 & v[mid] & \text{is not } x \\
mid: & 8 & v[mid] & < x \\
j: & 11 & \text{So throw away the right half...} \\
\hline
\end{array}
\]

Binary Search: \(\text{target } x = 70 \)

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
i: & 6 & v[mid] & \text{is not } x \\
mid: & 6 & v[mid] & < x \\
j: & 7 & \text{So throw away the left half...} \\
\hline
\end{array}
\]

Binary Search: \(\text{target } x = 70 \)

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
i: & 7 & v[mid] & \text{is not } x \\
mid: & 7 & v[mid] & < x \\
j: & 7 & \text{So throw away the left half...} \\
\hline
\end{array}
\]
Binary Search: target $x = 70$

<table>
<thead>
<tr>
<th>i</th>
<th>mid</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

DONE because i is greater than j
→ Not a valid search window

The Insertion Process

- Given a sorted list x, insert a number y such that the result is sorted
- Sorted: arranged in ascending (small to big) order

```
2 3 6 9
   x
```

```
2 3 6 9
```

We’ll call this process a *push down,* as in push a value down until it is in its sorted position

Binary search is efficient, but we need to sort the vector in the first place so that we can use binary search

- Many sorting algorithms out there...
- We look at **insertion sort** now
- Next lecture we’ll look at **merge sort** and do some analysis

The Insertion Process

- Given a sorted list x, insert a number y such that the result is sorted
- Sorted: arranged in ascending (small to big) order

```
2 3 6 9
```

We’ll call this process a *push down,* as in push a value down until it is in its sorted position

Sort list b using Insertion Sort

Need to start with a sorted segment. How do you find one?

```
0 1 2 3 4 5
```

$\text{Length 1 segment is sorted}$

push_down(b, 1) Then sorted segment has length 2
push_down(b, 2) Then sorted segment has length 3
push_down(b, 3) Then sorted segment has length 4
push_down(b, 4) Then sorted segment has length 5
push_down(b, 5) Then entire list is sorted

For a list of length n, call push_down $n-1$ times.
Helper functions make clear the algorithm

```python
def swap(b, h, k):
    ...
def push_down(b, k):
    while k > 0 and b[k-1] > b[k]:
        swap(b, k-1, k)
        k= k-1
def insertion_sort(b):
    for i in range(len(b)):
        push_down(b, i)
```

Algorithm Complexity

- Count the number of comparisons needed
- In the worst case, need i comparisons to push down an element in a sorted segment with i elements.

Algorithm Complexity (Q)

Count (approximately) the number of comparisons needed to sort a list of length n

A. ~ 1 comparison
B. $\sim n$ comparisons
C. $\sim n^2$ comparisons
D. $\sim n^3$ comparisons
E. I don’t know