
Lecture 7:
Objects

(Chapter 15)

CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,

S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2021sp

http://www.cs.cornell.edu/courses/cs1110/2021sp

• Optional 1-on-1 with a staff member to help just you

with course material. Sign up for a slot on CMS under

“SPECIAL: one-on-ones“.

• A1: updates on course website—see orange text on

cover page of A1 on website. We encourage you to use

Ed Discussions

• Want more examples or practice questions on string

functions? See archive on course website.

Announcements

3

Be sure to start A1 now

• Start A1 now
 Give yourself time to think through any difficult parts

 Consulting/office hours not too busy now—can get help fast

 There’s time to schedule a 1-on-1 appt

 Rewarding learning experience

• Start A1 the night before due date
 No time to deal with “sudden” difficulties
 Consulting/office hours very crowded—looonnng wait time
 Stressful experience undermines learning

5

Type: set of values & operations on

them

6

Type float:
• Values: real numbers

• Ops: +, -, *, /, //, **

Type int:
• Values: integers

• Ops: +, -, *, //, %, **

Type bool:
• Values: integers

• Ops: not, and, or

Type str:
• Values: string literals

• Double quotes: “abc”

• Single quotes: ‘abc’

• Ops: +

(concatenation)

Built-in Types are not “Enough”

• Want a point in 3D space

 We need three variables

 x, y, z coordinates

• What if have a lot of points?

 Vars x0, y0, z0 for first point

 Vars x1, y1, z1 for next point

 …

 This can get really messy

• How about a single variable

that represents a point?

7

x 2

y 3

z 5

• Can we stick them

together in a “folder”?

• Motivation for objects

Built-in Types are not “Enough”

• Want a point in 3D space

 We need three variables

 x, y, z coordinates

• What if have a lot of points?

 Vars x0, y0, z0 for first point

 Vars x1, y1, z1 for next point

 …

 This can get really messy

• How about a single variable

that represents a point?

8

x 2

y 3

z 5

Analogy: A folder is used to store info (data)

10

Objects: Organizing Data in Folders

• An object is like a manila folder

• It contains other variables

 Variables are called attributes

 These values can change

• It has an ID that identifies it

 Unique number assigned by Python

(just like a NetID for a Cornellian)

 Cannot ever change

 Has no meaning; only identifies

11

id1

x 2

y 3

z 5

Unique tab

identifier

Classes: user-defined types for Objects

• Values must have a type

 An object is a value

 Object type is a class

• Modules provide classes

• Example: shapes.py

 Defines: Point3, Rectangle

classes

12

id1

x 2

y 3

z 5

Point3

class name

You just need to use (have) the file shapes.py; no need to read its code for
now. You can read the docstring though to learn about the Point3 class.
Later in the course you will learn how to write such class files.

Constructor: Function to make Objects

• How do we create objects?

 Other types have literals

 No such thing for objects

• Call a Constructor Function:

 Format: ⟨class name⟩(⟨arguments⟩)

 Example: Point3(0,0,0)

 Makes a new object (manila folder)
with a new id

 Called an instantiated object

 Returns folder id as value

• Example: p = Point3(0, 0, 0)

 Creates a Point object

 Stores object’s id in p 13

id2p

variable
stores id

not object

id2

x 0

y 0

z 0

Point3

instantiated object

Storage in Python

• Global Space

 What you “start with”

 Stores global variables

 Lasts until you quit Python

• Heap Space

 Where “folders” are stored

 Have to access indirectly

• Call Frames

 Parameters

 Other variables local to function

 Lasts until function returns

id2p

Global Space

id2

Heap Space

f1

f2

C
al

l F
ra

m
es

Constructors and Modules

>>> import shapes

15

Need to import module

that has Point3 class.

Global Space Heap Space

shapes

• This is what’s actually happening
• Python Tutor draws this.
• Knowing this will help you debug.

CS 1110 doesn’t draw module variables & module
folders (also skips all the built-in functions)

makes your diagrams cleaner

shapes

module

Constructors and Modules

>>> import shapes

>>> p = shapes.Point3(0,0,0)

>>> id(p)

16

id2p id2

x 0

y 0

z 0

Point3

Need to import module

that has Point3 class.

Constructor is function.

Prefix w/ module name.

Shows the id of p

Global Space Heap Space

Accessing Attributes

• Attributes are variables

that live inside of objects

 Can use in expressions

 Can assign values to them

• Format: ⟨variable⟩.⟨attribute⟩

 Example: p.x

 Look like module variables

• To evaluate p.x, Python:

1. finds folder with id stored in p

2. returns the value of x in that folder

17

id3

x 1

y 2

z 3

id3p

Point3

Global Space Heap Space

Accessing Attributes Example

• Example:

p = shapes.Point3(1, 2, 3)

p.x = p.x + 3

18

id3

x 1

y 2

z 3

id3p

Point3

4x

Global Space Heap Space

Object Variables

• Variable stores object id

 Reference to the object

 Reason for folder analogy

• Assignment uses object id

 Example:

p1 = shapes.Point3(0, 0, 0)

p2 = p1

 Takes contents from p1

 Puts contents in p2

 Does not make new folder!

This is the cause of many mistakes when starting to use objects
19

id2p1 id2

x 0

y 0

z 0

Point3

id2p2

Global Space Heap Space

Attribute Assignment (Question)

>>> p = shapes.Point3(0,0,0)

>>> q = p

• Execute the assignments:

>>> p.x = 5

>>> q.x = 7

• What is value of p.x?

20

id4p

id4q

A: 5

B: 7

C: id4

D: I don’t know

id4

x 0

y 0

z 0

Point3

Global Space Heap Space

Call Frames and Objects (1)

• Objects can be altered in a

function call

 Object variables hold ids!

 Folder can be accessed from

global variable or parameter

• Example:

def incr_x(q):

q.x = q.x + 1

>>> p = shapes.Point3(1, 2, 3)

>>> incr_x(p)

22

1
incr_x 1

id5q

Call Frame

id5p id5

1
…

Point3

x

Global Space Heap Space

Call Frames and Objects (2)

• Objects can be altered in a

function call

 Object variables hold ids!

 Folder can be accessed from

global variable or parameter

• Example:

def incr_x(q):

q.x = q.x + 1

>>> p = shapes.Point3(1, 2, 3)

>>> incr_x(p)

23

1
incr_x 1

id5q

Call Frame

id5p id5

1 2
…

Point3

x

Global Space Heap Space

x

NONERETURN

Call Frames and Objects (3)

• Objects can be altered in a

function call

 Object variables hold ids!

 Folder can be accessed from

global variable or parameter

• Example:

def incr_x(q):

q.x = q.x + 1

>>> p = shapes.Point3(1, 2, 3)

>>> incr_x(p)

24

1
incr_x 1

id5q

Call Frame

id5p id5

1 2
…

Point3

x

Global Space Heap Space

x

NONERETURN

How Many Folders (Question)

25

import shapes

p = shapes.Point3(1,2,3)

q = shapes.Point3(3,4,5)

Draw everything that gets created.

How many folders get drawn?

Swap (Question)

29

What is in p.x at the end of this code?

A: 1

B: 2

C: 3

D: I don’t know

id1p

id2q

Point3

x 1

y 2

z 3

id1

Point3

x 3

y 4

z 5

id2

Heap Space

Global Space

import shapes
p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)

def swap_x(p, q):
1 t = p.x
2 p.x = q.x
3 q.x = t

swap_x(p, q)

Global p (Question)

32

import shapes
p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)

def swap(p, q):
1 t = p
2 p = q
3 q = t

swap(p, q)

What is in global p after calling swap?

A: id1

B: id2

C: I don’t know

id1p

id2q

Global Space

Point3

x 1

y 2

z 3

id1

Point3

x 3

y 4

z 5

id2

Heap Space

Methods: Functions Tied to Classes

• Method: function tied to object

 Method call looks like a function

call preceded by a variable name:

⟨variable⟩.⟨method⟩(⟨arguments⟩)

Example:

import shapes

u = shapes.Point3(4,2,3)

u.greet()

“Hi! I am a 3-dimensional point located at

(4,2,3)”

id3

x 4

y 2

z 3

id3u

Point3

35Where else have you seen this??

Recall: String Methods

• s1.upper()

 Returns returns an upper case

version of s1

• s.strip()

 Returns a copy of s with

white-space removed at ends

36

• s1.index(s2)

 Returns position of the first

instance of s2 in s1

 error if s2 is not in s1

• s1.count(s2)

 Returns number of times s2

appears inside of s1

Built-in Types vs. Classes

Built-in types

• Built-into Python

• Refer to instances as values

• Instantiate with literals

• Can ignore the folders

Classes

• Provided by modules

• Refer to instances as objects

• Instantiate w/ constructors

• Must represent with folders

37

Where To From Here?

• First, understand objects

 All Python programs use objects

 Most small programs use objects of classes
that are part of the Python Library

• Eventually, create your own classes:

 the heart of OO Programming

 the primary tool for organizing Python programs

• But we need to learn more basics first!

38

