
Coroutines

Module 29

What is Multitasking?

• In CS 1110 you create simple programs
§ You run the script in the Terminal
§ Program runs until done (or you quit)
§ Only then does Terminal “return” control

• But computers multiple programs at once
§ We can switch between without quitting
§ Some run simultaneously (playing music)
§ This is what we call multitasking

• Can we do something like this in Python?

But There are Two Types

Concurrency

• All programs make progress
§ Switch between programs
§ Switches are very fast (μs)

• Looks/feels simultaneous

Parallelism

• Programs run at same time
§ Each program gets CPU/core
§ No switching between progs

• Actually is simultaneous

Multitasking on
old hardware

Multitasking on
modern hardware

An Important Distinction

Concurrency Parallelism

prog 1 prog 2

prog 1 prog 2

Switching in Currency

Preemptive

• Can switch at any time
§ Even in middle of command!
§ Cannot prevent switching

• Very hard to program for
§ Must prepare for anything!
§ Debugging is a total nightmare

• Popularized by Unix systems
§ Many users on one machine
§ All need “equal” access

Cooperative

• Only switch at special points
§ Program specifies when okay
§ Returns back to this spot

• Can be easily abused
§ Program never specifies okay
§ That program hogs machine

• Popular in early days of GUIs
§ Okay for main app to hog
§ No expectation of other apps

Switching in Currency

Preemptive

• Can switch at any time
§ Even in middle of command!
§ Cannot prevent switching

• Very hard to program for
§ Must prepare for anything!
§ Debugging is a total nightmare

• Popularized by Unix systems
§ Many users on one machine
§ All need “equal” access

Cooperative

• Only switch at special points
§ Program specifies when okay
§ Returns back to this spot

• Can be easily abused
§ Program never specifies okay
§ That program hogs machine

• Popular in early days of GUIs
§ Okay for main app to hog
§ No expectation of other apps

Implement
with threads

Implement
with coroutines

Preemptive Largely Won Out

• Modern OSs moved away from cooperative
§ Windows went preemptive with Windows 95
§ MacOS went preemptive with MacOS X

• Why? The rise of parallelism
§ Threads can be concurrent and parallel
§ Coroutines are not (easily) parallel

• But threads have never gotten easier
§ We have tried for decades (many PhD theses)
§ Still the source of a lot of buggy code

But Coroutines Are Coming Back

• Have figured better ways to parallelize
§ Not as good as threads in general
§ But better/easier for certain applications

• Sometimes explicit coordination is good
§ Example: Client-server communication
§ One waits for the other until it responds

• And again relevant to graphical applications
§ They make a lot of animation code easier
§ Used heavily by the Unity game engine

Terminology: Subroutine

• A subroutine is a piece of code that
§ Is a set of frequently used instructions
§ Performs a specific task, packaged as a unit
§ Often serves to aid a larger program (routine)

• This sounds just like a function!
§ Not all programming languages have functions
§ This is a generic term that applies to all

• Not a term commonly in use these days

Subroutines vs Coroutines

Subroutine

• Runs until completed
§ Invoked by parent routine
§ Runs until reach the end
§ Returns output to parent

• Just like a function call
§ Parent is “frozen”
§ Subroutine/function runs
§ Parent resumes when done

Coroutine

• Can stop and start
§ Runs for a little while
§ Returns control to parent
§ And then picks up again

• Kind of like a generator
§ Starts up at initial call
§ Can yield execution
§ Resumes with full state

Subroutines vs Coroutines

Subroutine Coroutine

Program 1 Program 2

Frozen

Program 1 Program 2

Frozen

Frozen

Frozen

Frozen

Subroutines vs Coroutines

Subroutine Coroutine

Program 1 Program 2

Frozen

Program 1 Program 2

Frozen

Frozen

Frozen

Frozen

call

return

next

yield

next

yield

Application: Counting Words

counts = {} # Store the word count
word = '' # Accumulator to build word
for x in text:

if x.isalpha(): # Word continues
word = word+x

else: # Word ends
Add it if not empty
if word != '':

add_word(word,counts)
word = '' # Reset the accumulator

What if text
is really long?

read0.py

Progress Monitoring

• Want some way to measure progress
§ Graphical progress bar
§ Or even just print statements

• But do not want it inside the function
§ Want the user to be able to customize this
§ So the calling function monitors progress

• No way to do with simple function
§ We only know the progress when complete

Application: Counting Words

for pos in range(len(text)):
if pos % interval == 0:

yield progress
if x.isalpha(): # Word continues

word = word+x
else: # Word ends

Add it if not empty
if word != '':

add_word(word,counts)
word = '' # Reset the accumulator

Periodically
notify caller

read1.py

The Parent Caller

loader = wordcount(file) # Create coroutine
result = None

Keep going as long as the loader has more
while not loader is None:

try:
amount = next(loader) # Load some more data
show_progress(amount)

except StopIteration as e:
result = e.args[0] # Access the return value
loader = None # We are done

read1.py

Can Interleave Multiple Coroutines

loader1 = wordcount(file1)
loader2 = wordcount(file2)

progress1 = next(loader1)
progress2 = next(loader2)
progress1 = next(loader1)
progress2 = next(loader2)
….

read2.py

So Are Coroutines Just Generators?

• Generators are an example of a coroutine
§ Have parent child relationship
§ Use next() to transfer control to child
§ Child uses yield to transfer control back

• But coroutines are a little bit more
§ There is communication back-and-forth
§ Yield can give information back to parent
§ But next gives no information to child

So Are Coroutines Just Generators?

• Generators are an example of a coroutine
§ Have parent child relationship
§ Use next() to transfer control to child
§ Child uses yield to transfer control back

• But coroutines are a little bit more
§ There is communication back-and-forth
§ Yield can give information back to parent
§ But next gives no information to child

Need another command

Recall: The yield Statement

• Format: yield <expression>
§ Used to produce a value
§ But it does not stop the “function”
§ Useful for making iterators

• But: These are not normal functions
§ Presence of a yield makes a generator
§ Function that returns an iteratorHow do other direction?

Generators Have a send Method

• Generators have a send() method
§ a = mygenerator()
§ b = next(a) # progress and get a value
§ a.send(val) # sends a value back

• Sends to a yield expression
§ Format: (yield) # parentheses are necessary
§ Typically used in an assignment
§ Example: value = (yield)

Generators Have a send Method

• Generators have a send() method
§ a = mygenerator()
§ b = next(a) # progress and get a value
§ a.send(val) # sends a value back

• Sends to a yield expression
§ Format: (yield) # parentheses are necessary
§ Typically used in an assignment
§ Example: value = (yield)

Must always
start with next()

Visualizing in the Tutor

next() takes us
to first yield

Visualizing in the Tutor

Resumes with a
new variable!

Visualizing in the Tutor

Continue to
move forward

with send()

Can Do Both Ouput and Input

• Format: var = (yield expr)
§ Coroutine evaluates expr and outputs it
§ Coroutine stops and lets parent resume
§ When coroutine resumes, new value in var

• Example:
def give_receive(n):

"""Receives n values as input and prints them"""
for x in range(n):

value = (yield x)
print('Received '+repr(value))

Visualizing Back-and-Forth

next() gets first
value from yield

Visualizing Back-and-Forth

send() makes
new variable

Visualizing Back-and-Forth

yield ouputs
the expression

Visualizing Back-and-Forth

return value
of send()

Animation in Assignment 7

• Naïve animations are easy
§ Look at the key input right now
§ Move the objects based on the keys
§ Redraw the moved objects

• Timed animations are harder
§ Press a key to start the animation
§ Animation continues for X seconds
§ Animation stops automatically when done

animate1.py

animate2.py

Timed Animation Example

def update(self,dt):
"""Animates the image."""
if self._animating:

if self._rotation:
self._animate_turn(dt)

else:
self._animate_slide(dt)

elif self.input.is_key_down('left'):
self._animating = True
self._rotation = True
self._sangle = self.image.angle
self._fangle = self._sangle+90

…

Ignore input if
still animating

Otherwise start
animation for
given input

Timed Animation Example

def _animate_turn(self,dt):
"""Animates a rotation of the image over SPEED seconds"""
Compute degrees per second
steps = (self._fangle-self._sangle)/SPEED
amount = steps*dt
Update the angle
self.image.angle = self.image.angle+amount
If we go to far, clamp and stop animating
if abs(self.image.angle-self._sangle) >= 90:

self.image.angle = self._fangle
self._animating = False

dt tells how
far to animate

Animation Needs Many Attributes

def _animate_turn(self,dt):
"""Animates a rotation of the image over SPEED seconds"""
Compute degrees per second
steps = (self._fangle-self._sangle)/SPEED
amount = steps*dt
Update the angle
self.image.angle = self.image.angle+amount
If we go to far, clamp and stop animating
if abs(self.image.angle-self._sangle) >= 90:

self.image.angle = self._fangle
self._animating = False

New Attribute

New Attribute

New Attribute

Animation Needs Many Attributes

def _animate_turn(self,dt):
"""Animates a rotation of the image over SPEED seconds"""
Compute degrees per second
steps = (self._fangle-self._sangle)/SPEED
amount = steps*dt
Update the angle
self.image.angle = self.image.angle+amount
If we go to far, clamp and stop animating
if abs(self.image.angle-self._sangle) >= 90:

self.image.angle = self._fangle
self._animating = False

New Attribute

New Attribute

New Attribute

Is there a simpler
way to do this?

Same Animation With Coroutines

def update(self,dt):
"""Animates the image."""
if not self._animator is None: # Something to animate

try:
self._animator.send(dt) # Tell it secs to animate

except:
self._animator = None # Stop animating

elif self.input.is_key_down('left'):
self._animator = self._animate_turn('left')
next(self._animator) # Start up the animator

…

Same Animation With Coroutines

def update(self,dt):
"""Animates the image."""
if not self._animator is None: # Something to animate

try:
self._animator.send(dt) # Tell it secs to animate

except:
self._animator = None # Stop animating

elif self.input.is_key_down('left'):
self._animator = self._animate_turn('left')
next(self._animator) # Start up the animator

…

Ignore input if
still animating

Otherwise start
animation for
given input

Same Animation with Coroutines

def _animate_turn(self,direction):
"""Animates a rotation of the image over SPEED seconds"""
sangle = self.image.angle
fangle = sangle+90 if direction == 'left' else sangle-90
steps = (fangle-sangle)/ANIMATION_SPEED # Compute degrees per second
animating = True
while animating:

dt = (yield) # Get time to animate
amount = steps*dt
self.image.angle = self.image.angle+amount # Update the angle
if abs(self.image.angle-sangle) >= 90:

self.image.angle = fangle
animating = False

Same Animation with Coroutines

def _animate_turn(self,direction):
"""Animates a rotation of the image over SPEED seconds"""
sangle = self.image.angle
fangle = sangle+90 if direction == 'left' else sangle-90
steps = (fangle-sangle)/ANIMATION_SPEED # Compute degrees per second
animating = True
while animating:

dt = (yield) # Get time to animate
amount = steps*dt
self.image.angle = self.image.angle+amount # Update the angle
if abs(self.image.angle-sangle) >= 90:

self.image.angle = fangle
animating = False

Loop is explicit.
Animate until done

Another Application: Time Budgeting

calls Function

Another Application: Time Budgeting

calls Function

Must finish in
0.016 seconds

60 fps!

With a Coroutine

sends Coroutine

60 fps!

yields

You have
0.016 seconds

This is how loading
screens work!

Application: Counting Words

budget = (yield) # Get the initial budget
start = time.time() # Start the timer

for pos in range(len(text)):
end = time.time() # See if we have taken too long
if end-start > budget:

progress = round(100*pos/len(text))
budget = (yield progress) # Notify progress, get new budget
start = time.time() # Reset the timer for new budget

Build up the word, one letter at a time

read3.py

Application: Counting Words

budget = (yield) # Get the initial budget
start = time.time() # Start the timer

for pos in range(len(text)):
end = time.time() # See if we have taken too long
if end-start > budget:

progress = round(100*pos/len(text))
budget = (yield progress) # Notify progress, get new budget
start = time.time() # Reset the timer for new budget

Build up the word, one letter at a time

read3.py
Current time
in seconds

Python Now Has Native Coroutines

• No longer just a generator variation
§ Supported since Python 3.5
§ Requires the asyncio module

• Advantages
§ A lot less code to write
§ Much is done for you automatically

• Disadvantages
§ Much less flexible
§ Cannot use it for animations in A7

Three Requirements

• The yield expression is replaced by await
§ Stops until it gets an answer
§ But it is not a yield; does not output anything

• Function/method must start with async
§ Tells Python this is native coroutine
§ Presence of await is not enough

• Must use asyncio to run the coroutines
§ Top level function is asyncio.run(…)
§ All helpers are asyncio.create_task(…)

Word Count Example Revisited

async def loadfiles(fname1,fname2):
"""Creates a word-count dictionary for fname1, fname2"""
Create the tasks for the coroutines
result1 = {}
loader1 = asyncio.create_task(wordcount(fname1,result1))
result2 = {}
loader2 = asyncio.create_task(wordcount(fname2,result2))
Let them take over
await loader1
await loader2
result = merge(result1,result2)
print('Read a total of '+str(len(result))+' words.')

read4.py

The send() loop is
handled for you

Word Count Example Revisited

async def loadfiles(fname1,fname2):
"""Creates a word-count dictionary for fname1, fname2"""
Create the tasks for the coroutines
result1 = {}
loader1 = asyncio.create_task(wordcount(fname1,result1))
result2 = {}
loader2 = asyncio.create_task(wordcount(fname2,result2))
Let them take over
await loader1
await loader2
result = merge(result1,result2)
print('Read a total of '+str(len(result))+' words.')

read4.py

But cannot get
progress so far!

Why Native Coroutines?

• The generator version is better!
§ We have much more control
§ The yield expression goes back-and-forth

• But native coroutines support parallelism
§ Each coroutine can get its own core/thread
§ The await command is how we synchronize

• It is possible to emulate a yield
§ Requires very advanced Python (pipe.py)
§ Beyond the scope of this course

