Module 29

Coroutines

What is Multitasking?

 In CS 1110 you create simple programs
* You run the script in the Terminal
* Program runs until done (or you quit)

" Only then does Terminal “return” control

e But computers multiple programs at once
" We can switch between without quitting
* Some run simultaneously (playing music)

= This is what we call multitasking

e Can we do something like this in Python?

But There are Two Types

Concurrency

Parallelism

e All programs make progress

= Switch between programs
= Switches are very fast (us)

Looks/feels simultaneous

Multitasking on

old hardware

* Programs run at same time

= Each program gets CPU/core
= No switching between progs

e Actually is simultaneous

Multitasking on

modern hardware

An Important Distinction

Concurrency

Parallelism

prog 2

S S

prog 2

Switching in Currency

Preemptive Cooperative
e Can switch at any time * Only switch at special points
= Even in middle of command! = Program specifies when okay
= Cannot prevent switching = Returns back to this spot
* Very hard to program for e Can be easily abused
= Must prepare for anything! " Program never specifies okay
= Debugging is a total nightmare = That program hogs machine

* Popularized by Unix systems ¢ Popular in early days of GUIs

= Many users on one machine = (Okay for main app to hog

= All need “equal” access = No expectation of other apps

Switching in Currency

Preemptive Cooperative
e Can switch at any time * Only switch at special points
= Even in middle of command! = Program specifies when okay
= Cannot prevent switching = Returns back to this spot

Implement Implement

with threads with coroutines

* Popularized by Unix systems ¢ Popular in early days of GUIs

= Many users on one machine = (Okay for main app to hog

= All need “equal” access = No expectation of other apps

Preemptive Largely Won Out

* Modern OSs moved away from cooperative
" Windows went preemptive with Windows 95
= MacOS went preemptive with MacOS X
* Why? The rise of parallelism
= Threads can be concurrent and parallel
= Coroutines are not (easily) parallel
* But threads have never gotten easier

" We have tried for decades (many PhD theses)
= Still the source of a lot of buggy code

But Coroutines Are Coming Back

* Have figured better ways to parallelize
= Not as good as threads in general

= But better/easier for certain applications

e Sometimes explicit coordination 1s good
= Example: Client-server communication
= One waits for the other until 1t responds
* And again relevant to graphical applications

* They make a lot of animation code easier

= Used heavily by the Unity game engine

Terminology: Subroutine

e A subroutine 1s a piece of code that

= Is a set of frequently used instructions

= Performs a specific task, packaged as a unit

= Often serves to aid a larger program (routine)
e This sounds just like a function!

= Not all programming languages have functions

= This 1s a generic term that applies to all

* Not a term commonly 1n use these days

Subroutines vs Coroutines

Subroutine Coroutine
* Runs until completed e Can stop and start
* Invoked by parent routine * Runs for a little while
* Runs until reach the end = Returns control to parent
= Returns output to parent = And then picks up again
* Just like a function call * Kind of like a generator
= Parent 1s “frozen” = Starts up at initial call
= Subroutine/function runs = Can yield execution

= Parent resumes when done = Resumes with full state

Subroutines vs Coroutines

Subroutine Coroutine

Program 1 Program 2 Program 1 Program 2

UQZOI]

Frozen

Subroutines vs Coroutines

Subroutine Coroutine

Program 1 Program 2 Program 1 Program 2

next

call

F

return Frozen

Application: Counting Words

counts = {} # Store the word count
word =" # Accumulator to build word read0.py
for x in text: TN

if x.isalpha(): # Word continues
. word = word+x

else: # Word ends What if text
Add it if not empty is really long?

if word |1=""

. add_word(word,counts)
word =" # Reset the accumulator

Progress Monitoring

* Want some way to measure progress
= Graphical progress bar
= Or even just print statements
e But do not want it 1inside the function
= Want the user to be able to customize this

= So the calling function monitors progress

* No way to do with simple function

* We only know the progress when complete

Application: Counting Words

for pos in range(len(text)):

adi dl.
if pos % interval ==4{ Periodically }

. vield progress notify caller

if x.isalpha(): # Word continues
. word = word+x

else: # Word ends
Add it if not empty
if word I=":

. add_word(word,counts)
word =" # Reset the accumulator

The Parent Caller

loader = wordcount(file) # Create coroutine
readl.py
result = None

Keep going as long as the loader has more
while not loader is None:

try:
amount = next(loader) # Load some more data
show_progress(amount)

except Stoplteration as e:
result = e.args[O] # Access the return value

loader = None # We are done

Can Interleave Multiple Coroutines

loaderl = wordcount(filel) -
read?.py

loader? = wordcount(file?)

progressl = next(loaderl)
progressd = next(loader?)
progressl = next(loaderl)
progressd = next(loader?)

S0 Are Coroutines Just Generators?

e (Generators are an example of a coroutine
= Have parent child relationship
= Use next() to transfer control to child

= Child uses yield to transfer control back

e But coroutines are a little bit more

* There 1s communication back-and-forth
" Yield can give information back to parent

= But next gives no information to child

S0 Are Coroutines Just Generators?

e (Generators are an example of a coroutine

= Have parent child relationship
= Use next() to transfer control to child

= Child uses yield to transfer control back

e But coroutines are a little bit more

Recall: The yield Statement

 Format: yield <expression>
= Used to produce a value
= But 1t does not stop the “function”
= Useful for making iterators
 But: These are not normal functions

" Pre
e How do other direction?

Generators Have a send Method

e (Generators have a send() method
= 3 = mygenerator()
= p =next(a) # progress and get a value

= g.send(val) # sends a value back

e Sends to a yield expression
* Format: (yield) # parentheses are necessary
= Typically used in an assignment

= Example: value = (yield)

Generators Have a send Method

e (Generators have a send() method

=g = mygenerato? Must always }
= b = next(a) start with next() o value

= g.send(val) # sends a value back

e Sends to a yield expression
* Format: (yield) # parentheses are necessary
= Typically used in an assignment

= Example: value = (yield)

Visualizing in the Tutor

Visualize | | Execute Code | | Edit Code Heap primitives © Use arrows

Globals

def receive(n):

"""Receives n values as in neXt() takes us bal

for x in range(n): ceive |id1

receive the valu tO ﬁI'St yleld id2
value = (yield) n

=
print('Coroutine received value '+repr(va
Frames
o) receive
Add this if using the Python Tutor
a = receive(3) NE
next(a) # Get the thing started x 0
a.send('x") ngtg None
a.send('y"')

O

<<First <Back Step 6 of 16 Forward > Last >>

line that has just executed
== next line to execute

Objects

id1:function
receive(n)

id2:generator

receive(3)

Visualizing in the Tutor

Visualize | Execute Code | @ Edit Code Heap primitives =

def receive(n):
"""Receives n values as input and prints them
for x in range(n):
receive the value sent
value = (yield)
o print('Coroutine received value '+repr(va

Add this if using the Python Tutor
a = receive(3)

next(a) # Get the thing started
a.send('x")

a.send('y")

O

<< First <Back Step 8 of 16 Forward > Last >>

line that has just executed
== next line to execute

Use arrows =
Globals Objects
global id1:function
. . receive(n)
receive |idl
a |id2 id2:generator
receive(3)
Frames
receive
n 3
x |0
value |"x"

Resumes with a
new variable!

Visualizing in the Tutor

Visualize | Execute Code | Edit Code Heap primitives =

def receive(n):
"""Receives n values as input and prints them
for x in range(n):
receive the value sent
value = (yield)
— print('Coroutine received value '+repr(va

Add this if using the Python Tutor
a = receive(3)

next(a) # Get the thing started
a.send('x")

a.send('y")

<< First <Back Step 13 of 16 Forward > Last >>

line that has just executed
== next line to execute

Use arrows
Globals Objects
global id1:function
. . receive(n)
receive }Idlr
a |id2 id2:generator
receive(3)
Frames
receive
n 3
x |1
value "y"

Continue to
move forward
with send() P

-

Can Do Both Ouput and Input

 Format: var = (yield expr)
= Coroutine evaluates expr and outputs it
= Coroutine stops and lets parent resume

= When coroutine resumes, new value in var

 Example:
def give_receive(n):
"""Receives n values as input and prints them"™""
for x in range(n):
value = (yield x)

print('Received '+repr(value))

Visualizing Back-and-Forth

Visualize | | Execute Code | | Edit Code Heap primitives

def give_receive(n):
"""Receives n values as input and prints them
for x in range(n):
Give x to the parent function, receive
value = (yield x)
print('Coroutine received value '+repr(va

Add this if using the Python Tutor
give_receive(3)

next(a) # Get the first value in yield p
a.send('x') # Also returns the yield value i
a.send('y")

1l

N < X o %
1]

<< First <Back Step 7 of 16 Forward > Last >>

line that has just executed
== next line to execute

Use arrows

Globals Objects

global id1:function

e racelve: i give_receive(n)

a |id2 id2:generator

x |0 give_receive(3)

~
next() gets first

value from yield
_ /

Visualizing Back-and-Forth

Visualize | Execute Code | Edit Code Heap primitives Use arrows
: ’ Globals Objects
def give_receive(n):)
"""Receives n values as input and prints them global id1:function
for x in range(n): give_receive(n)

)) . give_receive |id1
Give x to the parent function, receive

id2 id2: t
value = (yield x) a e
— print('Coroutine received value '+repr(va x: |0 give_receive(3)
Add this if using the Python Tutor Frames
a = give_receive(3) _ _
X = next(a) # Get the first value in yield p S
y = a.send('x') # Also returns the yield value i n 3
z = a.send('y") x 0
value | "x"
O
<< First <Back Step 8 of 16 Forward > Last >> \
line that has just executed Send() makes

= next line to execute

new variable
_ J

Visualizing Back-and-Forth

Visualize | | Execute Code | | Edit Code Heap primitives

def give _receive(n):
"""Receives n values as input and prints them
for x in range(n):
Give x to the parent function, receive
value = (yield x)
print('Coroutine received value '+repr(va

Add this if using the Python Tutor
give_receive(3)

next(a) # Get the first value in yield p
a.send('x') # Also returns the yield value i
a.send('y")

1 1l

N < X o %
]

U

<<First <Back Step 11 of 16 Forward > Last >>

line that has just executed
== next line to execute

Proaram output:

Use arrows

global

Globals Objects

id1:function
give_receive(n)

give_receive |id1

a |id2 id2:generator
x |0 give_receive(3)
Frames

give_receive

n
X
value

Return
value

o

3
1

lell

1

~
yield ouputs
the expression

)

Visualizing Back-and-Forth

Visualize | Execute Code | Edit Code Heap primitives

def give_receive(n):
"""Receives n values as input and prints them
for x in range(n):
Give x to the parent function, receive
value = (yield x)
print('Coroutine received value '+repr(va

Add this if using the Python Tutor
give_receive(3)

next(a) # Get the first value in yield p
a.send('x') # Also returns the yield value i
a.send('y")

N < X o %
1l

U

<< First <Back Step 12 of 16 Forward > Last >>

line that has just executed
== next line to execute

Program output:

Use arrows

Globals Objects

global id1:function

e receive it give_receive(n)

a |id2 id2:generator
x |0 give_receive(3)
y |1

return value
of send()

Animation in Assignment 7

e Nalve animations are easy

= Look at the key input right now
= Move the objects based on the keys animate 1.py

= Redraw the moved objects

e Timed animations are harder

= Press a key to start the animation

animated.py

= Animation continues for X seconds

* Animation stops automatically when done

Timed Animation Example

def update(self,dt):
"""Animates the image."""

if self._animating: : :
Ignore mput 1f

if self._rotation: , ..
still animating

. self._animate_turn(dt)

else:
. self._animate_slide(dt)

elif self.input.is_key_down('left"): Otherwise start\
self._animating = True animation for
self._rotation = True given input

)

self._sangle = self.image.angle
self._fangle = self._sangle+90

Timed Animation Example

def _animate_turn(self,dt):

"""Animates a rotation of the image over SPEED seconds"""
Compute degrees per second

steps = (self._fangle-self._sangle)/SPEED

amount = steps*dt dt tells how

Update the angle <[far to animate }
self.image.angle = self.image.angle+amount

If we go to far, clamp and stop animating

if abs(self.image.angle-self._sangle) >= 90:
self.image.angle = self._fangle

self._animating = False

Animation Needs Many Attributes

def _animate_turn(self,dt):

"[New Attribute |R 0f the image over SPEED seconds™™
Compute de S per second

steps = (self._fangle-self._sangle)/SPEED
amount = steps*dt (k :

Update the angle New Attribute }
self.image.angle = self.image.angle+amount

If we go to far, clamp and stop animating

le-self._sangle) >= 90:
= gelf._fangle

New Attribute

self._animating = False

Animation Needs Many Attributes

def _animate_ turn(self,dt):

"[New AttribUth of the image over SPEED seconds™"
Computedas__Ja nan canand

steps = (.
MW s there a simpler
Updat way to do this?

self.imag)
If we go to far, clamp and stop animating
le-self._sangle) >= 90:
= gelf._fangle

New Attribute

self._animating = False

Same Animation With Coroutines

def update(self,dt):
"""Animates the image."""
if not self._animator is None: # Something to animate
try:
self. animator.send(dt) # Tell it secs to animate
except:
self._animator = None # Stop animating

elif self.input.is_key_down('left'):
self._animator = self. animate turn('left')
next(self. _animator) # Start up the animator

Same Animation With Coroutines

def update(self,dt):

"""Animates the image."""

if not self._animator is None:
try:

self. animator.send(dt)
except:

self._animator = None
elif self.input.is_key_down('left'):

next(self. _animator)

self._animator = self._animate_tupy animation for

S

Ignore mput 1f
still animating

Stop animating

, ™
Otherwise start

given input r

Same Animation with Coroutines

def _animate_turn(self,direction):
"""Animates a rotation of the image over SPEED seconds"""
sangle = self.image.angle
fangle = sangle+90 if direction == 'left' else sangle-90
steps = (fangle-sangle)/ANIMATION_SPEED # Compute degrees per second
animating = True
while animating:
dt = (yield) # Get time to animate
amount = steps*dt
self.image.angle = self.image.angle+amount # Update the angle
if abs(self.image.angle-sangle) >= 90:
self.image.angle = fangle
animating = False

Same Animation with Coroutines

def _animate_turn(self,direction):
"""Animates a rotation of the image over SPEED seconds"""
sangle = self.image.angle
fangle = sangle+90 if direction == 'left' else sangle-90
steps = (fangle-sangle)/ANIMATION_SPEED # Compute degrees per second
animating = True
while animating:
dt = (yield)
amount = steps*dt Animate until done
self.image.angle = self.image.angle+am
if abs(self.image.angle-sangle) >= 90:
self.image.angle = fangle
animating = False

Loop 1s explicit.

Another Application: Time Budgeting

Another Application: Time Budgeting

AN

Must finish 1n

0.016 seconds
\ J

60 fps!

With a Coroutine

You have
0.016 seconds

yields

This 1s how loading
60 fps! screens work!

Application: Counting Words

budget = (yield) # Get the initial budget
start = time.time() ~ # Start the timer reads.py

for pos in range(len(text)):

end = time.time() # See if we have taken too long

if end-start > budget:

progress = round(100*pos/len(text))

budget = (yield progress) # Notify progress, get new budget

start = time.time() # Reset the timer for new budget

Build up the word, one letter at a time

Application: Counting Words

budget = (yield) Current time fet
start = time.time() in seconds readd.py

for pos in range(len(text)):

end = time.time() # See if we have taken too long

if end-start > budget:

progress = round(100*pos/len(text))

budget = (yield progress) # Notify progress, get new budget

start = time.time() # Reset the timer for new budget

Build up the word, one letter at a time

Python Now Has Native Coroutines

* No longer just a generator variation
= Supported since Python 3.5
= Requires the asyncio module
 Advantages
= A lot less code to write
" Much 1s done for you automatically
* Disadvantages

= Much less flexible
= Cannot use i1t for animations in A7

Three Requirements

* The yield expression 1s replaced by await
= Stops until 1t gets an answer

= But it 1s not a yield; does not output anything
e Function/method must start with asynec

= Tells Python this 1s native coroutine

= Presence of await 1s not enough
* Must use asyncio to run the coroutines

= Top level function 1s asyncio.run(...)
= All helpers are asyncio.create_task(...)

Word Count Example Revisited

async def loadfiles(fnamel,fname?):
"""Creates a word-count dictionary for fnamel, fnamed"" read4.py

Create the tasks for the coroutines

resultl = {}

loaderl = asyncio.create_task(wordcount(fnamel,resultl))
resultd = {}

loader?d = asyncio.create_task(wordcount(fname?g,result?))
Let them take over

The send() loop is

await loaderl
handled for you

await loader?d
result = merge(resultl,result’)
print('Read a total of '+str(len(result))+' words.")

Word Count Example Revisited

async def loadfiles(fnamel,fname?):
"""Creates a word-count dictionary for fnamel, fnamed""
Create the tasks for the coroutines
resultl = {}
loaderl = asyncio.create_task(wordcount(fnamel,resultl))
resultd = {}

loader? = asyncio.create_task(wordcount(fname2 resulf.2))
Let them take over

await loaderl Bllt cannot get

await loader2 progress so far!

result = merge(resultl,result’)
print('Read a total of '+str(len(result))+' words.")

Why Native Coroutines?

* The generator version 1s better!
* We have much more control

= The yield expression goes back-and-forth
e But native coroutines support parallelism
= Each coroutine can get its own core/thread
= The await command 1s how we synchronize
It is possible to emulate a yield

= Requires very advanced Python (pipe.py)
= Beyond the scope of this course

