
11/28/21

1

Recall Our Problem

• Both insertion, selection sort are nested loops
§ Outer loop over each element to sort
§ Inner loop to put next element in place
§ Each loop is n steps. n×n = n2

• To do better we must eliminate a loop
§ But how do we do that?
§ What is like a loop? Recursion!
§ First need an intermediate algorithm

1

The Partition Algorithm

• Given a list segment b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] to get this answer

3 5 4 1 6 2 3 8 1 b
h k

change:

into 1 2 1 3 5 4 6 3 8b
h i k

1 2 3 1 3 4 5 6 8b
h i k

or

• x is called the pivot value
§ x is not a program variable
§ denotes value initially in b[h]

x ?

h k

Start: b

<= x x >= x

h i i+1 k

Goal: b

2

Designing the Partition Algorithm

• Given a list b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] to get this answer
x ?

h k

Start: b

<= x x >= x

h i i+1 k

Goal: b

<= x x ? >= x

h i j k

In-Progress: b

Indices b, h important!
Might partition only part

3

Implementating the Partition Algorithm

def partition(b, h, k):
"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]

while i < j-1:
if b[i+1] >= x:

Move to end of block.
swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
swap(b,i,i+1)
i = i + 1

return i

partition(b,h,k), not partition(b[h:k+1])
Remember, slicing always copies the list!

We want to partition the original list

4

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]

while i < j-1:
if b[i+1] >= x:

Move to end of block.
swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
swap(b,i,i+1)
i = i + 1

return i

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

1 2 1 3 5 0 6 3 8
h i i+1 j k

1 2 1 3 0 5 6 3 8
h i j k

1 2 1 0 3 5 6 3 8
h i j k

5

Why is this Useful?

• Will use this algorithm to replace inner loop
§ The inner loop cost us n swaps every time

• Can this reduce the number of swaps?
§ Worst case is k-h swaps
§ This is n if partitioning the whole list
§ But less if only partitioning part

• Idea: Break up list and partition only part?
§ This is Divide-and-Conquer!

6

11/28/21

2

Sorting with Partitions

• Given a list segment b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] to get this answer

x ?

h k

Start: b

<= x x >= x

h i i+1 k

Goal: b

Recursive partitions = sorting
§ Called QuickSort (why???)
§ Popular, fast sorting technique

Partition Recursively

y >= y<= y

7

QuickSort

def quick_sort(b, h, k):

"""Sort the array fragment b[h..k]"""

if b[h..k] has fewer than 2 elements:

return

j = partition(b, h, k)

b[h..j–1] <= b[j] <= b[j+1..k]

Sort b[h..j–1] and b[j+1..k]

quick_sort (b, h, j–1)

quick_sort (b, j+1, k)

• Worst Case:
array already sorted
§ Or almost sorted
§ n2 in that case

• Average Case:
array is scrambled
§ n log n in that case
§ Best sorting time!

x ?

h k
pre: b

<= x x >= x

h i i+1 k
post: b

8

So Does that Solve It?

• Worst case still seems bad! Still n2

§ But only happens in small number of cases
§ Just happens that case is common (already sorted)

• Can greatly reduce issue with randomization
§ Swap start with random element in list
§ Now pivot is random and already sorted unlikely

x ? y ?

h i k

Start: b

9

Can We Do Better?

• Recursion seems to be the solution
§ Partitioned the list into two halves
§ Recursively sorted each half

• How about a traditional divide-and-conquer?
§ Divide the list into two halves
§ Recursively sort the two halves
§ Combine the two sort halves

• How do we do the last step?

10

Merge Sort

def merge_sort(b, h, k):

"""Sort the array fragment b[h..k]"""

if b[h..k] has fewer than 2 elements:

return

Divide and recurse

mid = (h+k)//2

merge_sort (b, h, m)

merge_sort (b, m+1, k)

Combine

merge(b,h,mid,k) # Merge halves into b

• Seems simpler than qsort
§ Straight-forward d&c

§ Merge easy to implement
• What is the catch?

§ Merge requires a copy
§ We did not allow copies
§ Copying takes O(n) time
§ But so does merge/partition

• n log n ALWAYS

Proof beyond
scope of course

11

What Does Python Use?

• The sort() method is Timsort
§ Invented by Tim Peters in 2002
§ Combination of insertion sort and merge sort

• Why a combination of the two?
§ Merge sort requires copies of the data
§ Copying pays off for large lists, but not small lists
§ Insertion sort is not that slow on small lists
§ Balancing two properly still gives n log n

Quicksort is 1959!

12

