
Coroutines

Lecture 25

Announcements for This Lecture

Assignment & Lab Optional Videos

• ALL all are now posted
§ Lesson 29 for today
§ Lesson 30 is the last

11/23/21

• A6 is not graded yet
§ Done early next week
§ Survey still open today

• A7 due Tues, Dec. 7
• Extensions are possible
• Contact your lab instructor

§ Lab Today: Office Hours
• Get help on A7 aliens
• Anyone can go to any lab

Coroutines 2

Animating Objects

• Naïve animations are easy
§ Look at the key input right now
§ Move the objects based on the keys
§ Redraw the moved objects

• Timed animations are harder
§ Press a key to start the animation
§ Animation continues for X seconds
§ Animation stops automatically when done

animate1.py

animate2.py

11/23/21 Coroutines 3

Animation Needs Many Attributes

def _animate_turn(self,dt):
"""Animates a rotation of the image over SPEED seconds"""
Compute degrees per second
steps = (self._fangle-self._sangle)/SPEED
amount = steps*FRAME_RATE
Update the angle
self.image.angle = self.image.angle+amount
If we go to far, clamp and stop animating
if abs(self.image.angle-self._sangle) >= 90:

self.image.angle = self._fangle
self._animating = False

11/23/21 Coroutines 4

Animation Needs Many Attributes

def _animate_turn(self,dt):
"""Animates a rotation of the image over SPEED seconds"""
Compute degrees per second
steps = (self._fangle-self._sangle)/SPEED
amount = steps*FRAME_RATE
Update the angle
self.image.angle = self.image.angle+amount
If we go to far, clamp and stop animating
if abs(self.image.angle-self._sangle) >= 90:

self.image.angle = self._fangle
self._animating = False

New Attribute

New Attribute

New Attribute

11/23/21 Coroutines 5

Wouldn’t a Loop Be Simpler?

def _animate_turn(self,direction):
"""Animates a rotation of the image over SPEED seconds"""
sangle = self.image.angle
fangle = sangle+90 if direction == 'left' else sangle-90
steps = (fangle-sangle)/ANIMATION_SPEED # Degrees per second
animating = True
while animating:

amount = steps*FRAME_RATE
self.image.angle = self.image.angle+amount # Update the angle
if abs(self.image.angle-sangle) >= 90:

self.image.angle = fangle
animating = False

11/23/21 Coroutines 6

Wouldn’t a Loop Be Simpler?

def _animate_turn(self,direction):
"""Animates a rotation of the image over SPEED seconds"""
sangle = self.image.angle
fangle = sangle+90 if direction == 'left' else sangle-90
steps = (fangle-sangle)/ANIMATION_SPEED # Degrees per second
animating = True
while animating:

amount = steps*FRAME_RATE
self.image.angle = self.image.angle+amount # Update the angle
if abs(self.image.angle-sangle) >= 90:

self.image.angle = fangle
animating = False

Only Attribute

Loop is explicit.
Animate until done.

11/23/21 Coroutines 7

But This is Not Going to Work

• This won’t actually draw anything!
§ This function is a helper to update()
§ Keeps running until animation done
§ Method draw() only called at the end

• Cannot draw() inside of update()
§ All drawing must be at same time
§ What about all the other animations?

• Need some way to “break up” the loop

11/23/21 Coroutines 8

Doing this With a Bunch of Animations

11/23/21 Coroutines 9

Doing this With a Bunch of Animations

Animation
Loop

Animation
Loop

Animation
Loop

Animation
Loop

11/23/21 Coroutines 10

Doing this With a Bunch of Animations

We need to multitask
all these animations

11/23/21 Coroutines 11

What Do We Mean by Multitasking?

Concurrency

• All programs make progress
§ Switch between programs
§ Switches are very fast (μs)

• Looks/feels simultaneous

Parallelism

• Programs run at same time
§ Each program gets CPU/core
§ No switching between progs

• Actually is simultaneous

Multitasking on
old hardware

Multitasking on
modern hardware

11/23/21 Coroutines 12

An Important Distinction

Concurrency Parallelism

prog 1 prog 2

prog 1 prog 2

11/23/21 Coroutines 13

Switching in Currency

Preemptive

• Can switch at any time
§ Even in middle of command!
§ Cannot prevent switching

• Very hard to program for
§ Must prepare for anything!
§ Debugging is a total nightmare

• Popularized by Unix systems
§ Many users on one machine
§ All need “equal” access

Cooperative

• Only switch at special points
§ Program specifies when okay
§ Returns back to this spot

• Can be easily abused
§ Program never specifies okay
§ That program hogs machine

• Popular in early days of GUIs
§ Okay for main app to hog
§ No expectation of other apps

11/23/21 Coroutines 14

Switching in Currency

Preemptive

• Can switch at any time
§ Even in middle of command!
§ Cannot prevent switching

• Very hard to program for
§ Must prepare for anything!
§ Debugging is a total nightmare

• Popularized by Unix systems
§ Many users on one machine
§ All need “equal” access

Cooperative

• Only switch at special points
§ Program specifies when okay
§ Returns back to this spot

• Can be easily abused
§ Program never specifies okay
§ That program hogs machine

• Popular in early days of GUIs
§ Okay for main app to hog
§ No expectation of other apps

Implement
with threads

Implement
with coroutines

11/23/21 Coroutines 15

Preemptive Largely Won Out

• Modern OSs moved away from cooperative
§ Windows went preemptive with Windows 95
§ MacOS went preemptive with MacOS X

• Why? The rise of parallelism
§ Threads can be concurrent and parallel
§ Coroutines are not (easily) parallel

• But threads have never gotten easier
§ We have tried for decades (many PhD theses)
§ Still the source of a lot of buggy code

11/23/21 Coroutines 16

But Coroutines Are Coming Back

• Have figured better ways to parallelize
§ Not as good as threads in general
§ But better/easier for certain applications

• Sometimes explicit coordination is good
§ Example: Client-server communication
§ One waits for the other until it responds

• And also relevant to graphical applications
§ They make a lot of animation code easier
§ Used heavily by the Unity game engine

11/23/21 Coroutines 17

Aside: Subroutine

• A subroutine is a piece of code that
§ Is a set of frequently used instructions
§ Performs a specific task, packaged as a unit
§ Often serves to aid a larger program (routine)

• This sounds just like a function!
§ Not all programming languages have functions
§ This is a generic term that applies to all

• Not a term commonly in use these days

11/23/21 Coroutines 18

Subroutines vs Coroutines

Subroutine

• Runs until completed
§ Invoked by parent routine
§ Runs until reach the end
§ Returns output to parent

• Just like a function call
§ Parent is “frozen”
§ Subroutine/function runs
§ Parent resumes when done

Coroutine

• Can stop and start
§ Runs for a little while
§ Returns control to parent
§ And then picks up again

• Kind of like a generator
§ Starts up at initial call
§ Can yield execution
§ Resumes with full state

11/23/21 Coroutines 19

Subroutines vs Coroutines

Subroutine Coroutine

Program 1 Program 2

Frozen

Program 1 Program 2

Frozen

Frozen

Frozen

Frozen

11/23/21 Coroutines 20

Subroutines vs Coroutines

Subroutine Coroutine

Program 1 Program 2

Frozen

Program 1 Program 2

Frozen

Frozen

Frozen

Frozen

call

return

next

yield

next

yield

11/23/21 Coroutines 21

Subroutines vs Coroutines

Subroutine Coroutine

Parent Child

Frozen

Parent Child

Frozen

Frozen

Frozen

Frozen

call

return

next

yield

next

yield

11/23/21 Coroutines 22

Same Animation with Generator

def _animate_turn(self,direction):
"""Animates a rotation of the image over SPEED seconds"""
sangle = self.image.angle
fangle = sangle+90 if direction == 'left' else sangle-90
steps = (fangle-sangle)/ANIMATION_SPEED # Compute degrees per second
animating = True
while animating:

amount = steps*FRAME_RATE
self.image.angle = self.image.angle+amount # Update the angle
if abs(self.image.angle-sangle) >= 90:

self.image.angle = fangle
animating = False

yield # Pause to draw

11/23/21 Coroutines 23

Same Animation with Generator

def _animate_turn(self,direction):
"""Animates a rotation of the image over SPEED seconds"""
sangle = self.image.angle
fangle = sangle+90 if direction == 'left' else sangle-90
steps = (fangle-sangle)/ANIMATION_SPEED # Compute degrees per second
animating = True
while animating:

amount = steps*FRAME_RATE
self.image.angle = self.image.angle+amount # Update the angle
if abs(self.image.angle-sangle) >= 90:

self.image.angle = fangle
animating = False

yield # Pause to draw

11/23/21 Coroutines 24

Add this
one line

Also Need to Drive The Animation

def update(self,dt):
"""Animates the image."""
if not self._animator is None: # Something to animate

try:
next(self._animator) # Step animation forward

except StopIteration:
self._animator = None # Stop animating

elif self.input.is_key_down('left’): # Start animation on press
self._animator = self._animate_turn('left’)

…
11/23/21 Coroutines 25

Also Need to Drive The Animation

def update(self,dt):
"""Animates the image."""
if not self._animator is None: # Something to animate

try:
next(self._animator) # Step animation forward

except StopIteration:
self._animator = None # Stop animating

elif self.input.is_key_down('left’): # Start animation on press
self._animator = self._animate_turn('left’)

…
11/23/21 Coroutines 26

Ignore input if
still animating

Otherwise start
animation for
given input

Also Need to Drive The Animation

def update(self,dt):
"""Animates the image."""
if not self._animator is None: # Something to animate

try:
next(self._animator) # Step animation forward

except StopIteration:
self._animator = None # Stop animating

elif self.input.is_key_down('left’): # Start animation on press
self._animator = self._animate_turn('left’)

…
11/23/21 Coroutines 27

update is parent
of the coroutine

So Are Coroutines Just Generators?

• Generators are an example of a coroutine
§ Have parent-child relationship
§ Use next() to transfer control to child
§ Child uses yield to transfer control back

• But coroutines are a little bit more
§ There is communication back-and-forth
§ Yield can give information back to parent
§ But next gives no information to child

11/23/21 Coroutines 28

So Are Coroutines Just Generators?

• Generators are an example of a coroutine
§ Have parent-child relationship
§ Use next() to transfer control to child
§ Child uses yield to transfer control back

• But coroutines are a little bit more
§ There is communication back-and-forth
§ Yield can give information back to parent
§ But next gives no information to child

Need another command

11/23/21 Coroutines 29

Recall: The yield Statement

• Format: yield <expression>
§ Used to produce a value
§ But it does not stop the “function”
§ Useful for making iterators

• But: These are not normal functions
§ Presence of a yield makes a generator
§ Function that returns an iterator

11/23/21 Coroutines 30

Recall: The yield Statement

• Format: yield <expression>
§ Used to produce a value
§ But it does not stop the “function”
§ Useful for making iterators

• But: These are not normal functions
§ Presence of a yield makes a generator
§ Function that returns an iteratorHow do other direction?

11/23/21 Coroutines 31

Generators Have a send Method

• Generators have a send() method
§ a = mygenerator()
§ b = next(a) # progress and get a value
§ a.send(val) # sends a value back

• Sends to a yield expression
§ Format: (yield) # parentheses are necessary
§ Typically used in an assignment
§ Example: value = (yield)

11/23/21 Coroutines 32

Generators Have a send Method

• Generators have a send() method
§ a = mygenerator()
§ b = next(a) # progress and get a value
§ a.send(val) # sends a value back

• Sends to a yield expression
§ Format: (yield) # parentheses are necessary
§ Typically used in an assignment
§ Example: value = (yield)

Must always
start with next()

11/23/21 Coroutines 33

Visualizing in the Tutor

next() takes us
to first yield

11/23/21 Coroutines 34

Visualizing in the Tutor

Resumes with a
new variable!

11/23/21 Coroutines 35

Visualizing in the Tutor

Continue to
move forward

with send()
11/23/21 Coroutines 36

Can Do Both Ouput and Input

• Format: var = (yield expr)
§ Coroutine evaluates expr and outputs it
§ Coroutine stops and lets parent resume
§ When coroutine resumes, new value in var

• Example:
def give_receive(n):

"""Receives n values as input and prints them"""
for x in range(n):

value = (yield x)
print('Received '+repr(value))

11/23/21 Coroutines 37

Visualizing Back-and-Forth

next() gets first
value from yield

11/23/21 Coroutines 38

Visualizing Back-and-Forth

send() makes
new variable

11/23/21 Coroutines 39

Visualizing Back-and-Forth

yield ouputs
the expression

11/23/21 Coroutines 40

Visualizing Back-and-Forth

return value
of send()

11/23/21 Coroutines 41

Application: Animation Smoothing

• Our animation sequence is timed
§ We needed to keep track of the time
§ Did that with the constant FRAME_RATE
§ Assumes a consistent 60 frames per second

• But what if we do not actually have that?
§ The animation will be jerky (this is okay)
§ The animation will run too long (this is not)

• Example: Set MAKE_LAG to True
11/23/21 Coroutines 42

Animation Smoothing with Coroutines

def _animate_turn(self,direction):
"""Animates a rotation of the image over SPEED seconds"""
sangle = self.image.angle
fangle = sangle+90 if direction == 'left' else sangle-90
steps = (fangle-sangle)/ANIMATION_SPEED # Compute degrees per second
animating = True
while animating:

dt = (yield) # Get time to animate
amount = steps*dt
self.image.angle = self.image.angle+amount # Update the angle
if abs(self.image.angle-sangle) >= 90:

self.image.angle = fangle
animating = False

11/23/21 Coroutines 43

Animation Smoothing with Coroutines

def _animate_turn(self,direction):
"""Animates a rotation of the image over SPEED seconds"""
sangle = self.image.angle
fangle = sangle+90 if direction == 'left' else sangle-90
steps = (fangle-sangle)/ANIMATION_SPEED # Compute degrees per second
animating = True
while animating:

dt = (yield) # Get time to animate
amount = steps*dt
self.image.angle = self.image.angle+amount # Update the angle
if abs(self.image.angle-sangle) >= 90:

self.image.angle = fangle
animating = False

11/23/21 Coroutines 44

Get the current dt
as input each time

Parent Code Also Needs Tweaking

def update(self,dt):
"""Animates the image."""
if not self._animator is None: # Something to animate

try:
self._animator.send(dt) # Tell it secs to animate

except StopIteration:
self._animator = None # Stop animating

elif self.input.is_key_down('left'):
self._animator = self._animate_turn('left')
next(self._animator) # Start up the animator

…
11/23/21 Coroutines 45

Parent Code Also Needs Tweaking

def update(self,dt):
"""Animates the image."""
if not self._animator is None: # Something to animate

try:
self._animator.send(dt) # Tell it secs to animate

except:
self._animator = None # Stop animating

elif self.input.is_key_down('left'):
self._animator = self._animate_turn('left')
next(self._animator) # Start up the animator

…
11/23/21 Coroutines 46

Send dt to the
yield expression

Start coroutine
after creating it

Coroutines and Animation

• Popular approach in Unity game engine
§ Coding is in C#, not Python
§ But it has a yield and coroutines

• Because the Unity engine is complicated
§ Will not let you touch the core loop
§ You can only add custom animation scripts
§ With coroutines, get to program with the loop

• This is all cutting edge!
§ C++ added coroutines in 2020

11/23/21 Coroutines 47

Optional Exercise

11/23/21 Coroutines 48

New Application: Counting Words

counts = {} # Store the word count
word = '' # Accumulator to build word
for x in text:

if x.isalpha(): # Word continues
word = word+x

else: # Word ends
Add it if not empty
if word != '':

add_word(word,counts)
word = '' # Reset the accumulator

What if text
is really long?

read0.py

11/23/21 Coroutines 49

Progress Monitoring

• Want some way to measure progress
§ Graphical progress bar
§ Or even just print statements

• But do not want it inside the function
§ Want the user to be able to customize this
§ So the calling function monitors progress

• No way to do with simple function
§ We only know the progress when complete

11/23/21 Coroutines 50

Application: Counting Words

for pos in range(len(text)):
if pos % interval == 0:

yield progress
if x.isalpha(): # Word continues

word = word+x
else: # Word ends

Add it if not empty
if word != '':

add_word(word,counts)
word = '' # Reset the accumulator

Periodically
notify caller

read1.py

11/23/21 Coroutines 51

The Parent Caller

loader = wordcount(file) # Create coroutine
result = None

Keep going as long as the loader has more
while not loader is None:

try:
amount = next(loader) # Load some more data
show_progress(amount)

except StopIteration as e:
result = e.args[0] # Access the return value
loader = None # We are done

read1.py

11/23/21 Coroutines 52

