
11/23/21

1

Animating Objects

• Naïve animations are easy
§ Look at the key input right now
§ Move the objects based on the keys
§ Redraw the moved objects

• Timed animations are harder
§ Press a key to start the animation
§ Animation continues for X seconds
§ Animation stops automatically when done

animate1.py

animate2.py

1

Animation Needs Many Attributes

def _animate_turn(self,dt):
"""Animates a rotation of the image over SPEED seconds"""
Compute degrees per second
steps = (self._fangle-self._sangle)/SPEED
amount = steps*FRAME_RATE
Update the angle
self.image.angle = self.image.angle+amount
If we go to far, clamp and stop animating
if abs(self.image.angle-self._sangle) >= 90:

self.image.angle = self._fangle
self._animating = False

2

Wouldn’t a Loop Be Simpler?

def _animate_turn(self,direction):
"""Animates a rotation of the image over SPEED seconds"""
sangle = self.image.angle
fangle = sangle+90 if direction == 'left' else sangle-90
steps = (fangle-sangle)/ANIMATION_SPEED # Degrees per second
animating = True
while animating:

amount = steps*FRAME_RATE
self.image.angle = self.image.angle+amount # Update the angle
if abs(self.image.angle-sangle) >= 90:

self.image.angle = fangle
animating = False

3

But This is Not Going to Work

• This won’t actually draw anything!
§ This function is a helper to update()
§ Keeps running until animation done
§ Method draw() only called at the end

• Cannot draw() inside of update()
§ All drawing must be at same time
§ What about all the other animations?

• Need some way to “break up” the loop

4

Subroutines vs Coroutines

Subroutine

• Runs until completed
§ Invoked by parent routine
§ Runs until reach the end
§ Returns output to parent

• Just like a function call
§ Parent is “frozen”
§ Subroutine/function runs
§ Parent resumes when done

Coroutine

• Can stop and start
§ Runs for a little while
§ Returns control to parent
§ And then picks up again

• Kind of like a generator
§ Starts up at initial call
§ Can yield execution
§ Resumes with full state

5

Subroutines vs Coroutines

Subroutine Coroutine

Program 1 Program 2

Frozen

Program 1 Program 2

Frozen

Frozen

Frozen

Frozen

call

return

next

yield

next

yield

6

11/23/21

2

Same Animation with Generator

def _animate_turn(self,direction):
"""Animates a rotation of the image over SPEED seconds"""
sangle = self.image.angle

fangle = sangle+90 if direction == 'left' else sangle-90
steps = (fangle-sangle)/ANIMATION_SPEED # Compute degrees per second
animating = True
while animating:

amount = steps*FRAME_RATE
self.image.angle = self.image.angle+amount # Update the angle
if abs(self.image.angle-sangle) >= 90:

self.image.angle = fangle
animating = False

yield # Pause to draw

Add this
one line

7

Also Need to Drive The Animation

def update(self,dt):
"""Animates the image."""
if not self._animator is None: # Something to animate

try:
next(self._animator) # Step animation forward

except StopIteration:
self._animator = None # Stop animating

elif self.input.is_key_down('left’): # Start animation on press
self._animator = self._animate_turn('left’)

…

8

Generators Have a send Method

• Generators have a send() method
§ a = mygenerator()
§ b = next(a) # progress and get a value
§ a.send(val) # sends a value back

• Sends to a yield expression
§ Format: (yield) # parentheses are necessary
§ Typically used in an assignment
§ Example: value = (yield)

9

Can Do Both Ouput and Input

• Format: var = (yield expr)
§ Coroutine evaluates expr and outputs it
§ Coroutine stops and lets parent resume
§ When coroutine resumes, new value in var

• Example:
def give_receive(n):

"""Receives n values as input and prints them"""
for x in range(n):

value = (yield x)
print('Received '+repr(value))

10

Animation Smoothing with Coroutines

def _animate_turn(self,direction):
"""Animates a rotation of the image over SPEED seconds"""
sangle = self.image.angle

fangle = sangle+90 if direction == 'left' else sangle-90
steps = (fangle-sangle)/ANIMATION_SPEED # Compute degrees per second
animating = True
while animating:

dt = (yield) # Get time to animate
amount = steps*dt
self.image.angle = self.image.angle+amount # Update the angle
if abs(self.image.angle-sangle) >= 90:

self.image.angle = fangle
animating = False

Get the current dt
as input each time

11

Parent Code Also Needs Tweaking

def update(self,dt):
"""Animates the image."""
if not self._animator is None: # Something to animate

try:
self._animator.send(dt) # Tell it secs to animate

except:
self._animator = None # Stop animating

elif self.input.is_key_down('left'):
self._animator = self._animate_turn('left')
next(self._animator) # Start up the animator

…

12

