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Announcements for This Lecture
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• A4 Thursday at midnight
§ Hopefully you are on Task 4
§ That and task 5 are hardest

• Will post A5 on Thursday
§ Written assignment like A2
§ Needs material from Tues

• Will post A6 on Nov 2.
§ Not due until November 16
§ But is relevant for prelim 2!

Optional VideosAssignments

• Videos 20.1-20.8 today
• Videos 20.9-20.10 next time
• Also Lesson 21 next time

• Last week for regrades
§ Limit them to valid issues

• We will do them eventually

Exams



Recall: Objects as Data in Folders

• An object is like a manila folder
• It contains other variables

§ Variables are called attributes
§ Can change values of an attribute

(with assignment statements)
• It has a “tab” that identifies it

§ Unique number assigned by Python
§ Fixed for lifetime of the object
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Recall: Classes are Types for Objects

• Values must have a type
§ An object is a value
§ A class is its type

• Classes are how we add 
new types to Python
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Recall: Classes are Types for Objects

• Values must have a type
§ An object is a value
§ A class is its type

• Classes are how we add 
new types to Python
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Classes Have Folders Too

Object Folders

• Separate for each instance

Class Folders

• Data common to all instances
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The Class Definition

class <class-name>(object):

"""Class specification"""

<function definitions>

<assignment statements>

<any other statements also allowed>

Goes inside a 
module, just 

like a function 
definition.

class Example(object):
"""The simplest possible class."""
pass
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The Class Definition

class <class-name>(object):

"""Class specification"""

<function definitions>

<assignment statements>

<any other statements also allowed>

Goes inside a 
module, just 

like a function 
definition.keyword class

Beginning of a 
class definition

more on this later
Specification
(similar to one  
for a function)

Do not forget the colon!

to define 
methods

…but not often used

to define 
attributes

class Example(object):
"""The simplest possible class."""
pass
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Python creates 
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class definition



Recall: Constructors

• Function to create new instances
§ Function name == class name

§ Created for you automatically

• Calling the constructor:
§ Makes a new object folder

§ Initializes attributes

§ Returns the id of the folder

• By default, takes no arguments
§ e = Example()
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Instances and Attributes
• Assignments add object attributes

§ <object>.<att> = <expression>
§ Example: e.b = 42

• Assignments can add class attributes
§ <class>.<att> = <expression>
§ Example: Example.a = 29

• Objects can access class attributes
§ Example: print(e.a)
§ But assigning it creates object attribute
§ Example: e.a = 10

• Rule: check object first, then class
10/26/21 Classes
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Instances and Attributes
• Assignments add object attributes

§ <object>.<att> = <expression>
§ Example: e.b = 42

• Assignments can add class attributes
§ <class>.<att> = <expression>
§ Example: Example.a = 29

• Objects can access class attributes
§ Example: print(e.a)
§ But assigning it creates object attribute
§ Example: e.a = 10

• Rule: check object first, then class
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Instances and Attributes
• Assignments add object attributes

§ <object>.<att> = <expression>
§ Example: e.b = 42

• Assignments can add class attributes
§ <class>.<att> = <expression>
§ Example: Example.a = 29

• Objects can access class attributes
§ Example: print(e.a)
§ But assigning it creates object attribute
§ Example: e.a = 10

• Rule: check object first, then class
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Invariants

• Properties of an attribute that must be true
• Works like a precondition:

§ If invariant satisfied, object works properly
§ If not satisfied, object is “corrupted”

• Examples:
§ Point3 class: all attributes must be floats
§ RGB class: all attributes must be ints in 0..255

• Purpose of the class specification
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The Class Specification

class Worker(object):
"""A class representing a worker in a certain organization

Instance has basic worker info, but no salary information.

Attribute lname: The worker last name
Invariant: lname is a string

Attribute ssn: The Social Security number
Invariant: ssn is an int in the range 0..999999999

Attribute boss: The worker's boss
Invariant: boss is an instace of Worker, or None if no boss"""
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The Class Specification

class Worker(object):
"""A class representing a worker in a certain organization

Instance has basic worker info, but no salary information.

Attribute lname: The worker last name
Invariant: lname is a string

Attribute ssn: The Social Security number
Invariant: ssn is an int in the range 0..999999999

Attribute boss: The worker's boss
Invariant: boss is an instace of Worker, or None if no boss"""
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The Class Specification

class Worker(object):
"""A class representing a worker in a certain organization

Instance has basic worker info, but no salary information.

Attribute lname: The worker last name
Invariant: lname is a string

Attribute ssn: The Social Security number
Invariant: ssn is an int in the range 0..999999999

Attribute boss: The worker's boss
Invariant: boss is an instace of Worker, or None if no boss"""
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Warning: New format since 2019.
Old exams will be very different.



Recall: Objects can have Methods

• Object before the name is an implicit argument
• Example: distance

>>> p = Point3(0,0,0)     # First point
>>> q = Point3(1,0,0)     # Second point
>>> r = Point3(0,0,1)     # Third point
>>> p.distance(r)           # Distance between p, r
1.0
>>> q.distance(r) # Distance between q, r
1.4142135623730951
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Method Definitions

• Looks like a function def
§ Indented inside class
§ First param is always self
§ But otherwise the same

• In a method call:
§ One less argument in ()
§ Obj in front goes to self

• Example: a.distance(b) 

1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float     """
6. def distance(self,q):
7. """Returns dist from self to q
8. Precondition: q a Point3"""
9. assert type(q) == Point3
10. sqrdst = ((self.x-q.x)**2 +
11. (self.y-q.y)**2 +
12. (self.z-q.z)**2)
13. return math.sqrt(sqrdst)
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Methods Calls

• Example: a.distance(b) 1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float     """
6. def distance(self,q):
7. """Returns dist from self to q
8. Precondition: q a Point3"""
9. assert type(q) == Point3
10. sqrdst = ((self.x-q.x)**2 +
11. (self.y-q.y)**2 +
12. (self.z-q.z)**2)
13. return math.sqrt(sqrdst)
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Methods Calls

• Example: a.distance(b) 1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float     """
6. def distance(self,q):
7. """Returns dist from self to q
8. Precondition: q a Point3"""
9. assert type(q) == Point3
10. sqrdst = ((self.x-q.x)**2 +
11. (self.y-q.y)**2 +
12. (self.z-q.z)**2)
13. return math.sqrt(sqrdst)
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Methods and Folders

• Function definitions…
§ make a folder in heap
§ assign name as variable
§ variable in global space

• Methods are similar...
§ Variable in class folder
§ But otherwise the same

• Rule of this course
§ Put header in class folder
§ Nothing else!

1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float     """
6. def distance(self,q):

….
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distance(self,q)

Point3



Methods and Folders
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Just this



Initializing the Attributes of an Object (Folder)

• Creating a new Worker is a multi-step process:
§ w = Worker()
§ w.lname = 'White'
§ …

• Want to use something like
w = Worker('White', 1234, None)

§ Create a new Worker and assign attributes
§ lname to 'White', ssn to 1234, and boss to None

• Need a custom constructor
10/26/21 23
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Special Method: __init__

def __init__(self, n, s, b):
"""Initializes a Worker object

Has last name n, SSN s, and boss b 

Precondition: n a string, 
s an int in range 0..999999999, 
b either a Worker or None.   """
self.lname = n
self.ssn = s
self.boss = b
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Special Method: __init__

def __init__(self, n, s, b):
"""Initializes a Worker object 

Has last name n, SSN s, and boss b 

Precondition: n a string, 
s an int in range 0..999999999, 
b either a Worker or None.   """
self.lname = n
self.ssn = s
self.boss = b
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Evaluating a Constructor Expression

Worker('White', 1234, None)

1. Creates a new object (folder) 
of the class Worker
§ Instance is initially empty

2. Puts the folder into heap space
3. Executes the method __init__

§ Passes folder name to self
§ Passes other arguments in order
§ Executes the (assignment) 

commands in initializer body
4. Returns the object (folder) name
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Aside: The Value None

• The boss field is a problem.
§ boss refers to a Worker object
§ Some workers have no boss
§ Or maybe not assigned yet 

(the buck stops there)
• Solution: use value None

§ None: Lack of (folder) name
§ Will reassign the field later!

• Be careful with None values
§ var3.x gives error!
§ There is no name in var3
§ Which Point3 to use?
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A Class Definition

class Example(object):

def __init__(self,x):
self.x = x

def foo(self,y):
x = self.bar(y+1)
return x

def bar(self,y):
self.x = y-1
return self.x

>>> a = Example(3)
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B:

C: D:

A:

Which One is Closest to Your Answer?
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A Class Definition

class Example(object):

def __init__(self,x):
self.x = x

def foo(self,y):
x = self.bar(y+1)
return x

def bar(self,y):
self.x = y-1
return self.x

>>> a = Example(3)
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B:

C: D:

A:

Which One is Closest to Your Answer?

10/26/21 Classes 31

id1
Example

3x

id1
Example

3x

id1
Example

id1
Example

Ex.__init__ 13

id1self 3x

Ex.__init__ 13

id1self 3x

Ex.__init__ 13

3x

Ex.__init__ 13

3x



A Class Definition

class Example(object):

def __init__(self,x):
self.x = x

def foo(self,y):
x = self.bar(y+1)
return x

def bar(self,y):
self.x = y-1
return self.x

>>> a = Example(3)

10/26/21 Classes 32

13
12

14
15
16
17
18
19
20
21

What is the next step?

B:
id1

Example

Ex.__init__ 13

id1self 3x



Making Arguments Optional

• We can assign default values 
to __init__ arguments
§ Write as assignments to 

parameters in definition
§ Parameters with default 

values are optional
• Examples:

§ p = Point3()             # (0,0,0)
§ p = Point3(1,2,3)     # (1,2,3)
§ p = Point3(1,2)        # (1,2,0)
§ p = Point3(y=3)       # (0,3,0)
§ p = Point3(1,z=2)    # (1,0,2)

1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float     """
6.
7. def __init__(self,x=0,y=0,z=0):
8. """Initializes a new Point3
9. Precond: x,y,z are numbers"""
10. self.x = x
11. self.y = y
12. self.z = z
13. …
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Making Arguments Optional

• We can assign default values 
to __init__ arguments
§ Write as assignments to 

parameters in definition
§ Parameters with default 

values are optional
• Examples:

§ p = Point3()             # (0,0,0)
§ p = Point3(1,2,3)     # (1,2,3)
§ p = Point3(1,2)        # (1,2,0)
§ p = Point3(y=3)       # (0,3,0)
§ p = Point3(1,z=2)    # (1,0,2)

1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float     """
6.
7. def __init__(self,x=0,y=0,z=0):
8. """Initializes a new Point3
9. Precond: x,y,z are numbers"""
10. self.x = x
11. self.y = y
12. self.z = z
13. …
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Making Arguments Optional

• We can assign default values 
to __init__ arguments
§ Write as assignments to 

parameters in definition
§ Parameters with default 

values are optional
• Examples:

§ p = Point3()             # (0,0,0)
§ p = Point3(1,2,3)     # (1,2,3)
§ p = Point3(1,2)        # (1,2,0)
§ p = Point3(y=3)       # (0,3,0)
§ p = Point3(1,z=2)    # (1,0,2)

1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float     """
6.
7. def __init__(self,x=0,y=0,z=0):
8. """Initializes a new Point3
9. Precond: x,y,z are numbers"""
10. self.x = x
11. self.y = y
12. self.z = z
13. …
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Assigns in order

Use parameter name 
when out of order

Can mix two 
approaches

Not limited to methods.

Can do with any function.


