
Classes

Lecture 17

Announcements for This Lecture

10/26/21 2Classes

• A4 Thursday at midnight
§ Hopefully you are on Task 4
§ That and task 5 are hardest

• Will post A5 on Thursday
§ Written assignment like A2
§ Needs material from Tues

• Will post A6 on Nov 2.
§ Not due until November 16
§ But is relevant for prelim 2!

Optional VideosAssignments

• Videos 20.1-20.8 today
• Videos 20.9-20.10 next time
• Also Lesson 21 next time

• Last week for regrades
§ Limit them to valid issues

• We will do them eventually

Exams

Recall: Objects as Data in Folders

• An object is like a manila folder
• It contains other variables

§ Variables are called attributes
§ Can change values of an attribute

(with assignment statements)
• It has a “tab” that identifies it

§ Unique number assigned by Python
§ Fixed for lifetime of the object

10/26/21 3

id2

x 2.0

y 3.0

z 5.0

Unique tab
identifier

Classes

Recall: Classes are Types for Objects

• Values must have a type
§ An object is a value
§ A class is its type

• Classes are how we add
new types to Python

10/26/21 4

id2

x 2.0

y 3.0

z 5.0

Point3

class name
Classes
• Point3
• RGB
• Turtle
• Window

Types

• int
• float
• bool
• str

Classes

Recall: Classes are Types for Objects

• Values must have a type
§ An object is a value
§ A class is its type

• Classes are how we add
new types to Python

10/26/21 5

id2

x 2.0

y 3.0

z 5.0

Point3

class name
Classes
• Point3
• RGB
• Turtle
• Window

Types

• int
• float
• bool
• str

Classes

In Python3, type and class
are now both synonyms

Classes Have Folders Too

Object Folders

• Separate for each instance

Class Folders

• Data common to all instances

10/26/21 Classes 6

id2

x 2.0

y 3.0

z 5.0

Point3
id3

x 5.0

y 7.2

z -0.5

Point3

Point3

????

The Class Definition

class <class-name>(object):

"""Class specification"""

<function definitions>

<assignment statements>

<any other statements also allowed>

Goes inside a
module, just

like a function
definition.

class Example(object):
"""The simplest possible class."""
pass

10/26/21 Classes 7

Example

The Class Definition

class <class-name>(object):

"""Class specification"""

<function definitions>

<assignment statements>

<any other statements also allowed>

Goes inside a
module, just

like a function
definition.keyword class

Beginning of a
class definition

more on this later
Specification
(similar to one
for a function)

Do not forget the colon!

to define
methods

…but not often used

to define
attributes

class Example(object):
"""The simplest possible class."""
pass

10/26/21 Classes 8

Example

Python creates
after reading the
class definition

Recall: Constructors

• Function to create new instances
§ Function name == class name

§ Created for you automatically

• Calling the constructor:
§ Makes a new object folder

§ Initializes attributes

§ Returns the id of the folder

• By default, takes no arguments
§ e = Example()

10/26/21 Classes

id2
id2e

Example

Example

Will come
back to this

9

Instances and Attributes
• Assignments add object attributes

§ <object>.<att> = <expression>
§ Example: e.b = 42

• Assignments can add class attributes
§ <class>.<att> = <expression>
§ Example: Example.a = 29

• Objects can access class attributes
§ Example: print(e.a)
§ But assigning it creates object attribute
§ Example: e.a = 10

• Rule: check object first, then class
10/26/21 Classes

id2
id2e

Example

Example

42b

29a

10

Instances and Attributes
• Assignments add object attributes

§ <object>.<att> = <expression>
§ Example: e.b = 42

• Assignments can add class attributes
§ <class>.<att> = <expression>
§ Example: Example.a = 29

• Objects can access class attributes
§ Example: print(e.a)
§ But assigning it creates object attribute
§ Example: e.a = 10

• Rule: check object first, then class
10/26/21 Classes

id2
id2e

Example

Example

42b

29a

Not how
usually done

11

Instances and Attributes
• Assignments add object attributes

§ <object>.<att> = <expression>
§ Example: e.b = 42

• Assignments can add class attributes
§ <class>.<att> = <expression>
§ Example: Example.a = 29

• Objects can access class attributes
§ Example: print(e.a)
§ But assigning it creates object attribute
§ Example: e.a = 10

• Rule: check object first, then class
10/26/21 Classes

id2
id2e

Example

Example

42b

29a

10a

12

Invariants

• Properties of an attribute that must be true
• Works like a precondition:

§ If invariant satisfied, object works properly
§ If not satisfied, object is “corrupted”

• Examples:
§ Point3 class: all attributes must be floats
§ RGB class: all attributes must be ints in 0..255

• Purpose of the class specification
10/26/21 Classes 13

The Class Specification

class Worker(object):
"""A class representing a worker in a certain organization

Instance has basic worker info, but no salary information.

Attribute lname: The worker last name
Invariant: lname is a string

Attribute ssn: The Social Security number
Invariant: ssn is an int in the range 0..999999999

Attribute boss: The worker's boss
Invariant: boss is an instace of Worker, or None if no boss"""

10/26/21 Classes 14

The Class Specification

class Worker(object):
"""A class representing a worker in a certain organization

Instance has basic worker info, but no salary information.

Attribute lname: The worker last name
Invariant: lname is a string

Attribute ssn: The Social Security number
Invariant: ssn is an int in the range 0..999999999

Attribute boss: The worker's boss
Invariant: boss is an instace of Worker, or None if no boss"""

10/26/21 Classes 15

Description

Invariant

Short
summary

More
detail

The Class Specification

class Worker(object):
"""A class representing a worker in a certain organization

Instance has basic worker info, but no salary information.

Attribute lname: The worker last name
Invariant: lname is a string

Attribute ssn: The Social Security number
Invariant: ssn is an int in the range 0..999999999

Attribute boss: The worker's boss
Invariant: boss is an instace of Worker, or None if no boss"""

10/26/21 Classes 16

Warning: New format since 2019.
Old exams will be very different.

Recall: Objects can have Methods

• Object before the name is an implicit argument
• Example: distance

>>> p = Point3(0,0,0) # First point
>>> q = Point3(1,0,0) # Second point
>>> r = Point3(0,0,1) # Third point
>>> p.distance(r) # Distance between p, r
1.0
>>> q.distance(r) # Distance between q, r
1.4142135623730951

10/26/21 Classes 17

Method Definitions

• Looks like a function def
§ Indented inside class
§ First param is always self
§ But otherwise the same

• In a method call:
§ One less argument in ()
§ Obj in front goes to self

• Example: a.distance(b)

1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float """
6. def distance(self,q):
7. """Returns dist from self to q
8. Precondition: q a Point3"""
9. assert type(q) == Point3
10. sqrdst = ((self.x-q.x)**2 +
11. (self.y-q.y)**2 +
12. (self.z-q.z)**2)
13. return math.sqrt(sqrdst)

10/26/21 Classes 18

self q

Methods Calls

• Example: a.distance(b) 1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float """
6. def distance(self,q):
7. """Returns dist from self to q
8. Precondition: q a Point3"""
9. assert type(q) == Point3
10. sqrdst = ((self.x-q.x)**2 +
11. (self.y-q.y)**2 +
12. (self.z-q.z)**2)
13. return math.sqrt(sqrdst)

10/26/21 19

id2
Point3

id3b

x 1.0

y

z

2.0

3.0

id3
Point3

x 0.0

y

z

3.0

-1.0

id2a

Classes

Methods Calls

• Example: a.distance(b) 1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float """
6. def distance(self,q):
7. """Returns dist from self to q
8. Precondition: q a Point3"""
9. assert type(q) == Point3
10. sqrdst = ((self.x-q.x)**2 +
11. (self.y-q.y)**2 +
12. (self.z-q.z)**2)
13. return math.sqrt(sqrdst)

10/26/21 20

id2
Point3

id3b

x 1.0

y

z

2.0

3.0

id3
Point3

x 0.0

y

z

3.0

-1.0

id2a

Point3.distance 9

id3q

id2self

Classes

Methods and Folders

• Function definitions…
§ make a folder in heap
§ assign name as variable
§ variable in global space

• Methods are similar...
§ Variable in class folder
§ But otherwise the same

• Rule of this course
§ Put header in class folder
§ Nothing else!

1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float """
6. def distance(self,q):

….

10/26/21 Classes 21

distance(self,q)

Point3

Methods and Folders

10/26/21 Classes 22

Just this

Initializing the Attributes of an Object (Folder)

• Creating a new Worker is a multi-step process:
§ w = Worker()
§ w.lname = 'White'
§ …

• Want to use something like
w = Worker('White', 1234, None)

§ Create a new Worker and assign attributes
§ lname to 'White', ssn to 1234, and boss to None

• Need a custom constructor
10/26/21 23

Instance is empty

Classes

Special Method: __init__

def __init__(self, n, s, b):
"""Initializes a Worker object

Has last name n, SSN s, and boss b

Precondition: n a string,
s an int in range 0..999999999,
b either a Worker or None. """
self.lname = n
self.ssn = s
self.boss = b

10/26/21 Classes 24

w = Worker('White', 1234, None)

id8

lname 'White'

ssn

boss

1234

None

Worker

Called by the constructor

Special Method: __init__

def __init__(self, n, s, b):
"""Initializes a Worker object

Has last name n, SSN s, and boss b

Precondition: n a string,
s an int in range 0..999999999,
b either a Worker or None. """
self.lname = n
self.ssn = s
self.boss = b

10/26/21 Classes 25

w = Worker('White', 1234, None)

id8

lname 'White'

ssn

boss

1234

None

Worker

Called by the constructordon’t forget self
two underscores

use self to assign attributes

Evaluating a Constructor Expression

Worker('White', 1234, None)

1. Creates a new object (folder)
of the class Worker
§ Instance is initially empty

2. Puts the folder into heap space
3. Executes the method __init__

§ Passes folder name to self
§ Passes other arguments in order
§ Executes the (assignment)

commands in initializer body
4. Returns the object (folder) name

10/26/21 Classes 26

id8

lname 'White'

ssn

boss

1234

None

Worker

Aside: The Value None

• The boss field is a problem.
§ boss refers to a Worker object
§ Some workers have no boss
§ Or maybe not assigned yet

(the buck stops there)
• Solution: use value None

§ None: Lack of (folder) name
§ Will reassign the field later!

• Be careful with None values
§ var3.x gives error!
§ There is no name in var3
§ Which Point3 to use?

id5
Point3

id5var1

id6var2

Nonevar3

x 2.2

y

z

5.4

6.7

id6
Point3

x 3.5

y

z

-2.0

0.0
10/26/21 Classes 27

A Class Definition

class Example(object):

def __init__(self,x):
self.x = x

def foo(self,y):
x = self.bar(y+1)
return x

def bar(self,y):
self.x = y-1
return self.x

>>> a = Example(3)

10/26/21 Classes 28

13
12

14
15
16
17
18
19
20
21

What does the heap
look like now?

Ignoring the class folder
what does the call stack
and the heap look like?

B:

C: D:

A:

Which One is Closest to Your Answer?

10/26/21 Classes 29

id1
Example

3x

id1
Example

id1
Example

Ex.__init__ 13

id1self 3x

Ex.__init__ 13

id1self 3x

A Class Definition

class Example(object):

def __init__(self,x):
self.x = x

def foo(self,y):
x = self.bar(y+1)
return x

def bar(self,y):
self.x = y-1
return self.x

>>> a = Example(3)

10/26/21 Classes 30

13
12

14
15
16
17
18
19
20
21

What is the next step?

D:
id1

Example

B:

C: D:

A:

Which One is Closest to Your Answer?

10/26/21 Classes 31

id1
Example

3x

id1
Example

3x

id1
Example

id1
Example

Ex.__init__ 13

id1self 3x

Ex.__init__ 13

id1self 3x

Ex.__init__ 13

3x

Ex.__init__ 13

3x

A Class Definition

class Example(object):

def __init__(self,x):
self.x = x

def foo(self,y):
x = self.bar(y+1)
return x

def bar(self,y):
self.x = y-1
return self.x

>>> a = Example(3)

10/26/21 Classes 32

13
12

14
15
16
17
18
19
20
21

What is the next step?

B:
id1

Example

Ex.__init__ 13

id1self 3x

Making Arguments Optional

• We can assign default values
to __init__ arguments
§ Write as assignments to

parameters in definition
§ Parameters with default

values are optional
• Examples:

§ p = Point3() # (0,0,0)
§ p = Point3(1,2,3) # (1,2,3)
§ p = Point3(1,2) # (1,2,0)
§ p = Point3(y=3) # (0,3,0)
§ p = Point3(1,z=2) # (1,0,2)

1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float """
6.
7. def __init__(self,x=0,y=0,z=0):
8. """Initializes a new Point3
9. Precond: x,y,z are numbers"""
10. self.x = x
11. self.y = y
12. self.z = z
13. …

10/26/21 33Classes

Making Arguments Optional

• We can assign default values
to __init__ arguments
§ Write as assignments to

parameters in definition
§ Parameters with default

values are optional
• Examples:

§ p = Point3() # (0,0,0)
§ p = Point3(1,2,3) # (1,2,3)
§ p = Point3(1,2) # (1,2,0)
§ p = Point3(y=3) # (0,3,0)
§ p = Point3(1,z=2) # (1,0,2)

1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float """
6.
7. def __init__(self,x=0,y=0,z=0):
8. """Initializes a new Point3
9. Precond: x,y,z are numbers"""
10. self.x = x
11. self.y = y
12. self.z = z
13. …

10/26/21 34Classes

Assigns in order

Use parameter name
when out of order

Can mix two
approaches

Making Arguments Optional

• We can assign default values
to __init__ arguments
§ Write as assignments to

parameters in definition
§ Parameters with default

values are optional
• Examples:

§ p = Point3() # (0,0,0)
§ p = Point3(1,2,3) # (1,2,3)
§ p = Point3(1,2) # (1,2,0)
§ p = Point3(y=3) # (0,3,0)
§ p = Point3(1,z=2) # (1,0,2)

1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float """
6.
7. def __init__(self,x=0,y=0,z=0):
8. """Initializes a new Point3
9. Precond: x,y,z are numbers"""
10. self.x = x
11. self.y = y
12. self.z = z
13. …

10/26/21 35Classes

Assigns in order

Use parameter name
when out of order

Can mix two
approaches

Not limited to methods.

Can do with any function.

