Lecture 15

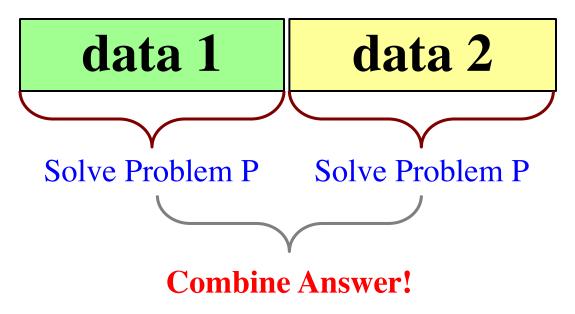
More Recursion

Announcements for This Lecture

Prelim 1

- Prelim 1 is tonight!
 - 7:30 pm, by last name
 - **A-C** in Ives 305
 - **D-Z** in Bailey 101
- SDS, conflicts contacted
 - Have own room, time
- Graded by Wed late
 - OH all day Thurs

Assignments


- Assignment 3 is graded
 - **Mean** 92.5, **Median** 98
 - Time: 7.5 hr, **SDev**: 3.5 hr
 - With 720 responses
- Begin working on A4!
 - Just reading takes a while
 - Slightly longer than A3
 - Problems are harder

Recall: Divide and Conquer

Goal: Solve problem P on a piece of data

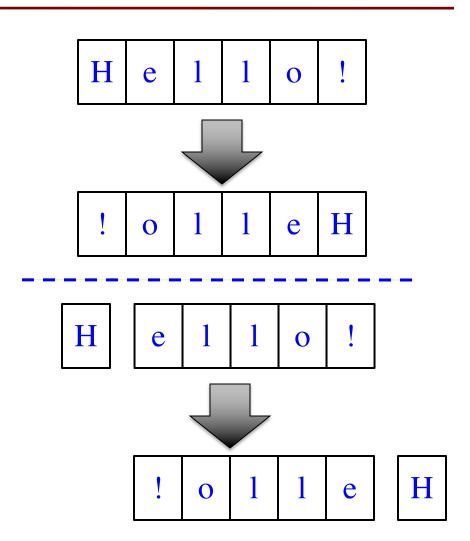
data

Idea: Split data into two parts and solve problem


```
def reverse(s):
```

"""Returns: reverse of s

Precondition: s a string"""


1. Handle small data

if len(s) <= 1:

return s

2. Break into two parts

3. Combine the result


```
def reverse(s):
                                            H
                                                 e
  """Returns: reverse of s
  Precondition: s a string"""
  # 1. Handle small data
  if len(s) \le 1:
                                                                 H
                                                 0
     return s
  # 2. Break into two parts
                                           H
                                                  e
  left = s[0]
  right = reverse(s[1:])
  # 3. Combine the result
                                                                        H
```

```
def reverse(s):
                                            H
                                                 e
  """Returns: reverse of s
  Precondition: s a string"""
  # 1. Handle small data
  if len(s) \le 1:
                                                                 H
                                                 0
     return s
  # 2. Break into two parts
                                           H
                                                  e
  left = s[0]
  right = reverse(s[1:])
  # 3. Combine the result
                                                                        H
  return right+left
```

```
def reverse(s):
  """Returns: reverse of s
  Precondition: s a string"""
  # 1. Handle small data
  if len(s) \le 1:
                                           Base Case
     return s
  # 2. Break into two parts
  left = s[0]
                                           Recursive
  right = reverse(s[1:])
                                               Case
  # 3. Combine the result
  return right+left
```

```
def reverse(s):
  """Returns: reverse of s
  Precondition: s a string"""
  # 1. Handle small data
  if len(s) \le 1:
                                           Base Case
     return s
                 Remove
  # 2. Break recursive call
  left = s[0]
                                           Recursive
  right = reverse(s[1:])
                                              Case
  # 3. Combine the result
  return right+left
```

def commafy(s):

```
"""Returns: string with commas every 3 digits e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""
```

Approach 1

5

def commafy(s):

"""Returns: string with commas every 3 digits

e.g. commafy('5341267') = '5,341,267'

Precondition: s represents a non-negative int"""

Approach 1

5

341267

341,267

def commafy(s):

"""Returns: string with commas every 3 digits

e.g. commafy('5341267') = '5,341,267'

Precondition: s represents a non-negative int"""

Approach 1

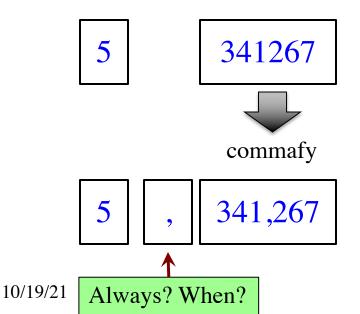
5

341267

commafy

5

341,267


def commafy(s):

"""Returns: string with commas every 3 digits

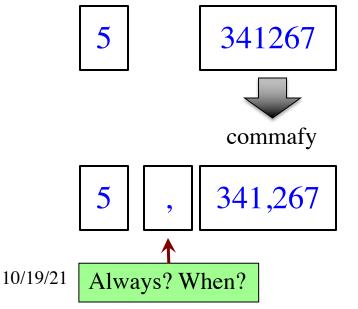
e.g. commafy('5341267') = '5,341,267'

Precondition: s represents a non-negative int"""

Approach 1

More Recursion 12

def commafy(s):


"""Returns: string with commas every 3 digits

e.g. commafy('5341267') = '5,341,267'

Precondition: s represents a non-negative int"""

Approach 1

Approach 2

5341

def commafy(s):

10/19/21

"""Returns: string with commas every 3 digits

e.g. commafy('5341267') = '5,341,267'

Precondition: s represents a non-negative int"""

Approach 1

5 341267

commafy

5 , 341,267

Always? When?

Approach 2

267

5341

commafy

5,341

More Recursion

def commafy(s):

"""Returns: string with commas every 3 digits

e.g. commafy('5341267') = '5,341,267'

Precondition: s represents a non-negative int"""

Approach 1

5 341267

commafy

Approach 2

5341

commafy

5,341

267

267

10/19/21

Always? When?

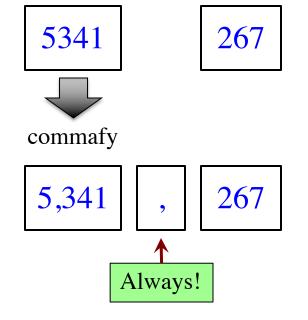
More Recursion

def commafy(s):

"""Returns: string with commas every 3 digits

e.g. commafy('5341267') = '5,341,267'

Precondition: s represents a non-negative int"""


Approach 1

5 341267
commafy

5 , 341,267

10/19/21 Always? When?

Approach 2


```
def commafy(s):
```

```
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""
# 1. Handle small data.
if len(s) \le 3:
  return s
# 2. Break into two parts
left = commafy(s[:-3])
right = s[-3:] # Small part on RIGHT
# 3. Combine the result
return left + ',' + right
```

Base Case

Recursive Case

def exp(b, c)

"""Returns: bc

Precondition: b a float, $c \ge 0$ an int"""

Approach 1

$$12^{256} = 12 \times (12^{255})$$
Recursive

$$b^{c} = b \times (b^{c-1})$$

Approach 2

$$12^{256} = (12^{128}) \times (12^{128})$$
Recursive Recursive

$$b^{c} = (b \times b)^{c/2}$$
 if c even

Raising a Number to an Exponent

Approach 1

Approach 2

```
def exp(b, c)
                                               def exp(b, c)
   """Returns: b<sup>c</sup>
                                                  """Returns: b<sup>c</sup>
   Precond: b a float, c \ge 0 an int"""
                                                  Precond: b a float, c \ge 0 an int"""
  # b^0 is 1
                                                  # b^0 is 1
  if c == 0:
                                                  if c == 0:
     return 1
                                                     return 1
  \# b^c = b(b^{c-1})
                                                  \# c > 0
  left = b
                                                  if c \% 2 == 0:
                                                      return \exp(b*b,c//2)
  right = exp(b,c-1)
  return left*right
                                                  return b*exp(b*b,(c-1)//2)
```

Raising a Number to an Exponent

Approach 1

Approach 2

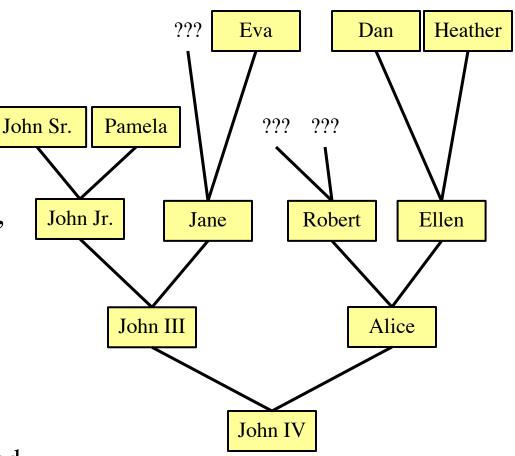
```
def exp(b, c)
                                               def exp(b, c)
   """Returns: b<sup>c</sup>
                                                  """Returns: b<sup>c</sup>
   Precond: b a float, c \ge 0 an int"""
                                                  Precond: b a float, c \ge 0 an int"""
  # b^0 is 1
                                                  # b^0 is 1
  if c == 0:
                                                  if c == 0:
                                                     return 1
     return 1
  \# b^c = b(b^{c-1})
                                                                       right
   left = b
                                                      return \exp(b*b,c//2)
  right = \exp(b,c-1)
                                                  return b*exp(b*b,(c-1)//2)
  return left*right
```

10/19/21

More Recursionleft

right

Raising a Number to an Exponent


```
def exp(b, c)
   """Returns: b<sup>c</sup>
  Precond: b a float, c \ge 0 an int"""
  # b^0 is 1
  if c == 0:
     return 1
  \# c > 0
  if c \% 2 == 0:
      return \exp(b*b,c//2)
  return b*exp(b*b,(c-1)//2)
```

c	# of calls
0	0
1	1
2	2
4	3
8	4
16	5
32	6
2 ⁿ	n + 1

32768 is 215 b³²⁷⁶⁸ needs only 215 calls!

Recursion and Objects

- Class Person (person.py)
 - Objects have 3 attributes
 - name: String
 - mom: Person (or None)
 - dad: Person (or None)
- Represents the "family tree"
 - Goes as far back as known
 - Attributes mom and dad are None if not known
- Constructor: Person(n,m,d)
 - Or Person(n) if no mom, dad

Recursion and Objects

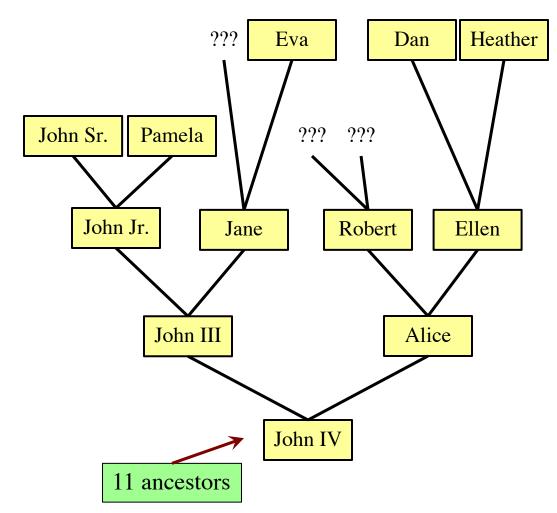
```
def num_ancestors(p):
```

"""Returns: num of known ancestors

Pre: p is a Person"""

1. Handle small data.

No mom or dad (no ancestors)


2. Break into two parts

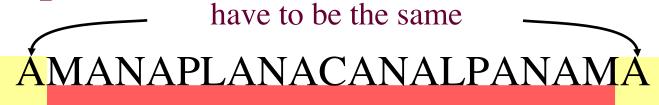
Has mom or dad

Count ancestors of each one

(plus mom, dad themselves)

3. Combine the result

Recursion and Objects


```
def num_ancestors(p):
                                                            ???
                                                                                        Heather
                                                                   Eva
                                                                               Dan
  """Returns: num of known ancestors
  Pre: p is a Person"""
  # 1. Handle small data.
                                                                     ???
                                          John Sr.
                                                    Pamela
                                                                          ???
  if p.mom == None and p.dad == None:
     return 0
  # 2. Break into two parts
                                              John Jr.
                                                                          Robert
                                                                                      Ellen
                                                              Jane
  moms = 0
  if not p.mom == None:
    moms = 1+num_ancestors(p.mom)
                                                      John III
                                                                                 Alice
  dads = 0
  if not p.dad== None:
     dads = 1 + num\_ancestors(p.dad)
                                                                   John IV
  # 3. Combine the result
                                                  11 ancestors
  return moms+dads
```

Is All Recursion Divide and Conquer?

- Divide and conquer implies two halves "equal"
 - Performing the same check on each half
 - With some optimization for small halves
- Sometimes we are given a recursive definition
 - Math formula to compute that is recursive
 - String definition to check that is recursive
 - Picture to draw that is recursive
 - **Example**: n! = n (n-1)!
- In that case, we are just implementing definition

Example: Palindromes

- String with ≥ 2 characters is a palindrome if:
 - its first and last characters are equal, and
 - the rest of the characters form a palindrome
- Example:

has to be a palindrome

Function to Implement:

def ispalindrome(s):

"""Returns: True if s is a palindrome"""

10/19/21 More Recursion 26

Example: Palindromes

- String with ≥ 2 characters is a palindrome if:
 - its first and last characters are equal, and
 - the rest of the characters form a palindrome

return ends and middle

Recursive Definition

Recursive Functions and Helpers

```
def ispalindrome2(s):
    """Returns: True if s is a palindrome
    Case of characters is ignored."""
    if len(s) < 2:
        return True
    # Halves not the same; not divide and conquer
    ends = equals_ignore_case(s[0], s[-1])
    middle = ispalindrome(s[1:-1])
    return ends and middle</pre>
```

Recursive Functions and Helpers

```
def ispalindrome2(s):
    """Returns: True if s is a palindrome
    Case of characters is ignored """"
    if len(s) < 2:
        return True
    # Halves not the same; not divide and conquer
    ends = equals_ignore_case(s[0], s[-1])
    middle = ispalindrome(s[1:-1])
    return ends and middle</pre>
```

Recursive Functions and Helpers

```
Use helper functions!
def ispalindrome2(s):
  """Returns: True if s is a palindrome
                                            Pull out anything not
  Case of characters is ignored """
                                            part of the recursion
  if len(s) < 2:
                                            Keeps your code simple
                                            and easy to follow
     return True
  # Halves not the same; not divide and conquer
  ends = equals_ignore_case(s[0], s[-1])
  middle = ispalindrome(s[1:-1])
  return ends and middle
```

"""Returns: True if a and b are same ignoring case"""

def equals_ignore_case(a, b):

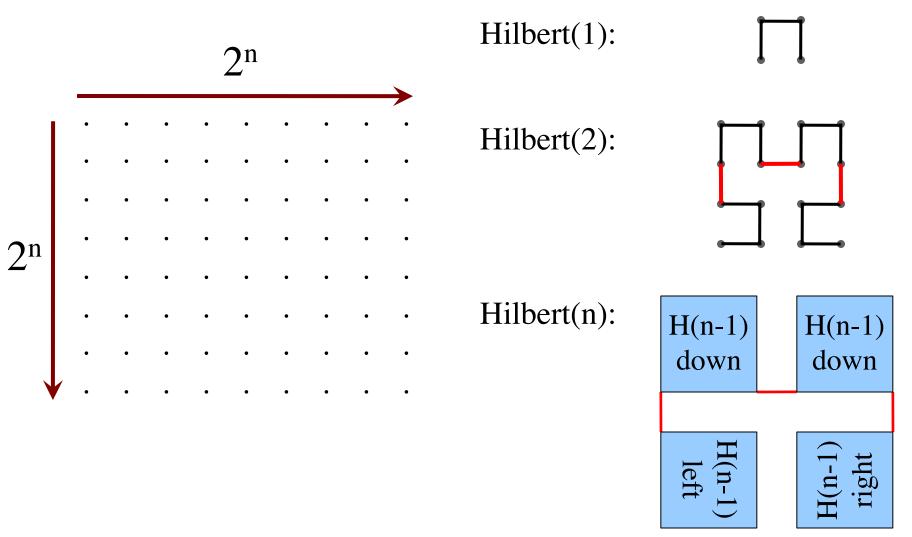
return a.upper() == b.upper()

Example: More Palindromes

```
def ispalindrome3(s):
   """Returns: True if s is a palindrome
   Case of characters and non-letters ignored."""
   return ispalindrome2(depunct(s))
def depunct(s):
   """Returns: s with non-letters removed"""
   if s == ":
     return s
   # Combine left and right
   if s[0] in string.letters:
     return s[0]+depunct(s[1:])
   # Ignore left if it is not a letter
```

return depunct(s[1:])

Use helper functions!

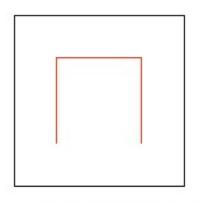

- Sometimes the helper is a recursive function
- Allows you break up problem in smaller parts

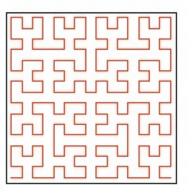
Example: Space Filling Curves

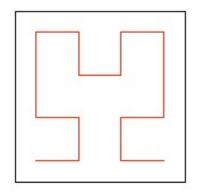
Challenge

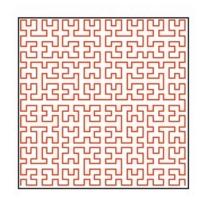
- Draw a curve that
 - Starts in the left corner
 - Ends in the right corner
 - Touches every grid point
 - Does not touch or cross itself anywhere
- Useful for analysis of 2-dimensional data

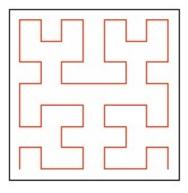
Hilbert's Space Filling Curve

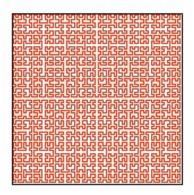


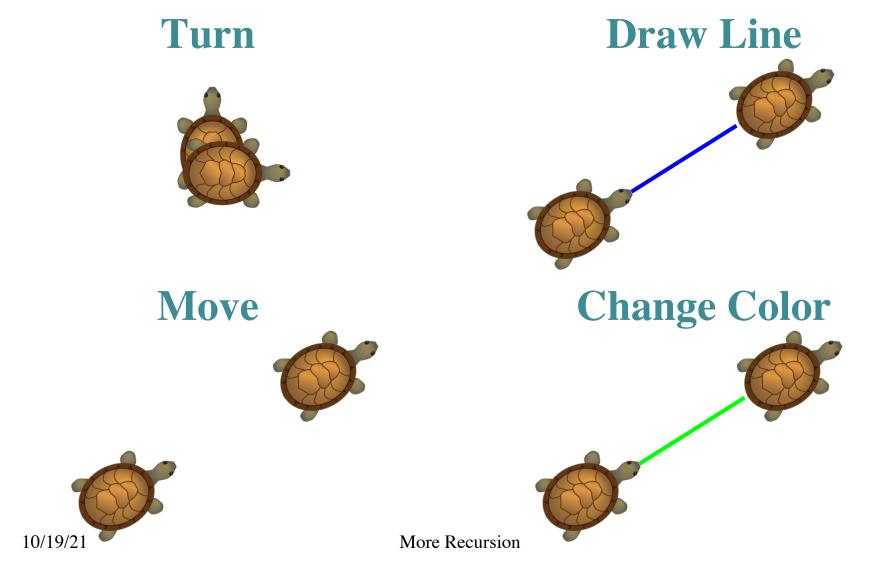

10/19/21


Hilbert's Space Filling Curve


Basic Idea


- Given a box
- Draw $2^n \times 2^n$ grid in box
- Trace the curve
- As n goes to ∞, curve fills box





"Turtle" Graphics: Assignment A4

