
Last Name: First: Netid:

CS 1110 Prelim 2 November 21st, 2019

This 90-minute exam has 5 questions worth a total of 100 points. Scan the whole test before starting.
Budget your time wisely. Use the back of the pages if you need more space. You may tear the pages
apart; we have a stapler at the front of the room.

It is a violation of the Academic Integrity Code to look at any exam other than your
own, look at any reference material, or otherwise give or receive unauthorized help.

You will be expected to write Python code on this exam. We recommend that you draw vertical
lines to make your indentation clear, as follows:

def foo():
if something:

do something
do more things

do something last

You should not use while-loops on this exam. Beyond that, you may use any Python feature that
you have learned about in class (if-statements, try-except, lists, for-loops, recursion and so on).

Question Points Score

1 2

2 21

3 25

4 26

5 26

Total: 100

The Important First Question:

1. [2 points] Write your last name, first name, and netid at the top of each page.

Last Name: First: Netid:

References

String Operations

Operation Description

len(s) Returns: Number of characters in s; it can be 0.
a in s Returns: True if the substring a is in s; False otherwise.
a*n Returns: The concatenation of n copies of a: a+a+ · · ·+a.
s.find(s1) Returns: Index of FIRST occurrence of s1 in s (-1 if s1 is not in s).
s.count(s1) Returns: Number of (non-overlapping) occurrences of s1 in s.
s.islower() Returns: True if s is has at least one letter and all letters are lower case;

it returns False otherwise (e.g. 'a123' is True but '123' is False).
s.isupper() Returns: True if s is has at least one letter and all letters are uppper case;

it returns False otherwise (e.g. 'A123' is True but '123' is False).
s.isalpha() Returns: True if s is not empty and its elements are all letters; it returns

False otherwise.
s.isdigit() Returns: True if s is not empty and its elements are all numbers; it returns

False otherwise.
s.isalnum() Returns: True if s is not empty and its elements are all letters or numbers;

it returns False otherwise.

List Operations

Operation Description

len(x) Returns: Number of elements in list x; it can be 0.
y in x Returns: True if y is in list x; False otherwise.
x.index(y) Returns: Index of FIRST occurrence of y in x (error if y is not in x).
x.count(y) Returns: the number of times y appears in list x.
x.append(y) Adds y to the end of list x.
x.insert(i,y) Inserts y at position i in x. Elements after i are shifted to the right.
x.remove(y) Removes first item from the list equal to y. (error if y is not in x).

Dictionary Operations

Function
or Method

Description

len(d) Returns: number of keys in dictionary d; it can be 0.
y in d Returns: True if y is a key d; False otherwise.
d[k] = v Assigns value v to the key k in d.
del d[k] Deletes the key k (and its value) from the dictionary d.
d.clear() Removes all keys (and values) from the dictionary d.

Page 2

Last Name: First: Netid:

2. [21 points total] Iteration.

Implement the functions below using for-loops. You do not need to enforce preconditions.

(a) [9 points]
def skipmult(alist,n,k):

"""MODIFIES alist to multiply every kth element by n (starting at 0).

Example: Suppose a = [1, 3, 5, 7]. skipmult(a,2,2) makes a == [2, 3, 10, 7]
(positions 0 and 2). Similarly, skipmult(a,2,3) makes a == [2, 3, 5, 14].

Precondition: alist is a list of numbers (int or float)
Precondition: n is number (int or float), k is an int > 1"""

(b) [12 points]
def merge(dict1,dict2):

"""Returns a new dictionary merging (joining keys) dict1 and dict2.

If a key appears in only one of dict1 or dict2, the value is the value
from that dictionary. If it is in both, the value is the sum of values.
Example: merge({'a':1,'b':2},{'b':3,'c':4}) returns {'a':1,'b':5,'c':4}

Precondition: dict1, dict2 are dictionaries with int or float values"""

Page 3

Last Name: First: Netid:

3. [25 points total] Recursion.
Use recursion to implement the following functions. Solutions using for-loops will receive no
credit. You do not need to enforce the preconditions.
(a) [12 points]

def clamp(alist,min,max):
"""Returns a copy of alist with every element between min and max (inclusive).

Any number less than min becomes min. Any number greater than max becomes
max. Any number strictly between min and max is left unchanged.

Example: clamp([-1, 1, 3, 5],0,4) returns [0,1,3,4]

Precondition: alist is a (possibly empty) list of numbers (float or int)
Precondition: min <= max are numbers (int or float)"""

Page 4

Last Name: First: Netid:

(b) [13 points]
def disemvowel(text):

"""Returns a tuple splitting text into the pair (consonants,vowels)

The vowels are 'a','e','i','o','u'. The order and number of characters is
preserved. If text has no consonants, that side of the pair is the empty
string and likewise for vowels.

Example: disemvowel('membership') returns ('mmbrshp','eei')
Example: disemvowel('grr') returns ('grr','')
Example: disemvowel('aie') returns ('','aie'),

Precondition: text is a (possibly empty) string of lower case letters"""

Page 5

Last Name: First: Netid:

4. [26 points] Classes and Subclasses

In this problem, you will create Cornellian, a class representing a person working or studying
at Cornell. You will also create the subclass Student, which is a Cornellian with a GPA.

Each Cornellian must have a unique Cornell id. The class attribute NEXTID is used to au-
tomatically assign Cornell ids (a person cannot pick their id). When a Cornellian object is
created, it gets NEXTID as its id and then NEXTID is incremented by one.

In summary, the attributes of these two classes are as follows:

Cornellian
Attribute Invariant Category
NEXTID int > 0 Class attribute
_cuid int > 0 Immutable instance attribute
_name nonempty string Mutable instance attribute

Student
Attribute Invariant Category
_gpa float in 0.0 to 4.3 Mutable instance attribute

On the next three pages, you are to do the following:

1. Fill in the missing information in each class header.

2. Add getters and setters as appropriate for the instance attributes

3. Fill in the parameters of each method (beyond the getters and setters).

4. Implement each method according to the specification.

5. Enforce any preconditions in these methods using asserts

We have not added headers for any of the getters and setters. You are to write (and name) these
yourself. You are not expected to write specifications for the getters and setters. For
the other methods, pay attention to the provided specifications. The only parameters are those
indicated by the preconditions.

Important: Student is not allowed to access any hidden attributes of Cornellian. As an
additional restriction, Student may not access any getters and setters in Cornellian.

Page 6

Last Name: First: Netid:

class Cornellian # Fill in missing part
"""A class representing a student at Cornell"""

Attribute NEXTID: A CLASS ATTRIBUTE that is an int > 0. Its initial value is 1."""
Attribute _cuid: The Cornell id. An int > 0 (IMMUTABLE)
Attribute _name: The full name of the person. A non-empty string (MUTABLE)

INITIALIZE THE CLASS ATTRIBUTE

DEFINE GETTERS/SETTERS/HELPERS AS APPROPRIATE. SPECIFICATIONS NOT NEEDED.

THE INTIALIZER
def __init__ # Fill in missing part

"""Initializes a Cornellian with name n.

The initializer assigns the NEXTID value as the Cornell ID.
It it also increments the class attribute NEXTID by one.

Precondition: n is a nonempty string"""

Page 7

Last Name: First: Netid:

Class Cornellian (CONTINUED).
def __str__ # Fill in missing part

"""Returns a description of this Cornellian

The description has form 'name [cuid]'
Example: 'Walker White [1160491]' """

def __eq__ # Fill in missing part
"""Returns True other is a Cornellian object equal to this one.

Two Cornellians are equal if they have the same Cornell ID EVEN
THOUGH their names may be different (people can change names).

Precondition: NONE (other can be anything)"""

class Student # Fill in missing part
"""A class representing a student at Cornell"""
Attribute _gpa: Student's grade point average. Float between 0.0 and 4.3 (MUTABLE)

DEFINE GETTERS/SETTERS AS APPROPRIATE. SPECIFICATIONS NOT NEEDED.

Page 8

Last Name: First: Netid:

Class Student (CONTINUED).
def __init__ # Fill in missing part

"""Initializes a Student with name n and gpa g.

Precondition: n is a nonempty string
Precondition: g is a float between 0.0 and 4.3 (DEFAULT value 0.0)"""

def onDeansList # Fill in missing part
"""Return True if the student's GPA >= 3.5; False otherwise"""

def __str__ # Fill in missing part
"""Returns a description of this Student

The description is the same as Cornellian, except that it adds
"Dean's List" (after a comma) if the Student is on the Dean's List.

Examples: 'Bob Roberts [234781]' or "Emma Towns [492886], Dean's List" """

Page 9

Last Name: First: Netid:

5. [26 points total] Folders and Name Resolution

Consider the two (undocumented) classes below, together with their line numbers.

1 class A(object):
2 x = [1]
3 y = 5
4
5 def __init__(self,x,y):
6 self.x.append(x)
7 self.y = y
8
9 def f(self,y):

10 return 1-self.g(y)
11
12 def g(self,x):
13 return x*self.y
14

15 class B(A):
16 x = [2]
17 z = 3
18
19 def __init__(self,x):
20 super().__init__(x,x+1)
21 self.x = x
22
23 def f(self,y):
24 return super().f(y)+2
25
26 def g(self,x):
27 self.x = x
28 return 3+self.y

(a) [10 points] Execute (do not diagram) the constructor call

> > > b = B(3)

Draw all of the contents of the heap (including class folders and any objects) after this
call is completed. You do not need to draw global space or any call frames. Assign b the
folder identifier id1 (even if other objects are present) so we can clearly identify it.

(b) [16 points] On the next two pages, diagram the method call

> > > a = b.f(4)

Diagram the state of the entire call stack for the method when it starts, for each line
executed, and when the frame is erased. If any other methods are called, you should do
this for them as well (at the appropriate time). This will require a total of eight diagrams.

You should draw also the state of global space and the heap at each step. You can ignore
everything in the heap except for the folder for b (so no need to draw class folders). You
may also write “unchanged” if no changes were made to either global space or the heap.

Page 10

Last Name: First: Netid:

Call Frames Global Space The Heap

3

1

4

2

Page 11

Last Name: First: Netid:

Call Frames Global Space The Heap
5

7

6

8

Page 12

