
Lecture 23:
while Loops

(Sections 7.3, 7.4)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2020sp

Recall: For Loops

for x in grades:
print(x)

• loop sequence: grades
• loop variable: x
• body: print(x)
To execute the for-loop:
1. Check if there is a “next”

element of loop sequence
2. If so:
• assign next sequence

element to loop variable
• Execute all of the body
• Go back to Line 1

3. If not, terminate execution

grades has
more elements

put next
element in x

True

False
print(x)

2

Different types of Repetition

1. Process each item in a sequence
 Compute statistics for a dataset
 Send all your contacts an email

2. Do something n times
 Draw a checkers board
 Run a protein-folding simulation for 106 time steps

3. Do something an unknown number of times
 Play word guessing game until 6 strikes
 Go in current direction until edge is detected

3

for x in sequence:
process x

for x in range(n):
do something

???

https://www.flickr.com/photos/janitors/albums/72157642146435575/with/13058966193/

Beyond Sequences: The while-loop

while <condition >:
statement 1
…
statement n

• Relationship to for-loop
 Broader notion of

“keep working until done”
 Must explicitly ensure

condition becomes false
 You explicitly manage

what changes per iteration

4

condition body
True

False

body

While-Loops and Flow

import random

num= random.randint(0,10)
guessed_it = False
print(”I’m thinking of a number.”)

while not guessed_it:
guess = int(input(‘Guess it: ’))
guessed_it = (num== guess)

print(‘Well done!')

I’m thinking of a number.
Guess it: 6
Guess it: 2
Guess it: 1
Guess it: 4
Well done!

5

Continuation condition,
not stopping condition

Q1: What gets printed?

a = 0
while a < 1:

a = a + 1

print(a)

6

a = 0
while a < 2:

a = a + 1

print(a)

a = 0
while a > 2:

a = a + 1

print(a)

Q2: What gets printed?

a = 4
while a > 0:

a = a - 1

print(a)

9

a = 0
while a < 3:

if a < 2:
a = a + 1

print(a)

Q3: What gets printed?

a = 8
b = 12
while a != b:

if a > b:
a = a - b

else:
b = b - a

print(a)
12

This is Euclid’s Algorithm for
finding the greatest common
factor of two positive integers.
Trivia: It is one of the oldest

recorded algorithms (~300 B.C.)

A: Infinite loop
B: 8
C: 12
D: 4
E: I don’t know

Start next video:
while or for ?

14

for vs. while

• You can almost always use either

• Sometimes for is better
 Do something a fixed (pre-determined) number of times

• Sometimes while is better
 Do something an indefinite (not infinite) number of times
 E.g., do something until some event happens, i.e., until a

stopping condition is reached

15

Called “definite iteration”

Called “indefinite iteration”

for vs. while

for k in range(n):
do something

k = 0
while k < n:

do something
k = k+1

Must remember to increment

16

do something n times

My preference? for-loop

for vs. while

for k in range(BIG_NUM):
do something
if time to stop:

break

while not time to stop:
do something

17

do something an unknown number of times

My preference? while-loop

Do NOT use break in any
work you submit in

CS1110.
Practice using while-loop in
situations where while-loop

is well suited

for vs. while

for k in range(len(seq)):
seq[k] = seq[k]+1

k = 0
while k < len(seq):

seq[k] = seq[k]+1
k = k+1

18

while is more flexible, but
sometimes requires more code

do something to each element of a sequence

My preference? for-loop

for vs. while

19

do something until a limit is reached

seq = []
k = 0
while k*k < N:

seq.append(k*k)
k = k+1
can use complex

expressions to check
if a task is done

seq = []
sqn= math.floor(sqrt(N))
for k in range(sqn+1):

seq.append(k*k)

for-loop requires you to
know how many iterations
you want ahead of time

My preference? while-loop

e.g., make a table of squares up to N

for vs. while

for i in range(len(nums)):
if nums[i] == 3:

del nums[i]

IndexError: list index out of
range

while 3 in nums:
nums.remove(3)

20

change a sequence’s length

is this not beautiful?

My preference? while-loop

e.g., remove all 3’s for list nums

for vs. while

fib = [1, 1]
for k in range(2,n):

fib.append(fib[-1] + fib[-2])

fib = [1, 1]
while len(fib) < n:

fib.append(fib[-1] + fib[-2])

loop variable not
always used

loop variable not
always needed at all

Fibonacci numbers:
F0 = 1
F1 = 1
Fn = Fn–1 + Fn–2

21

find 1st n Fibonacci numbers

My preference? while-loop

Last item
in list

Second‐last
item in list

Using while-loops Instead of for-loops

Advantages

• Better for modifying data
 More natural than range
 Works better with deletion

• Better for convergent tasks
 Loop until calculation done
 Exact steps are unknown

• Easier to stop early
 Just set loop var

(keep_going) to False

Disadvantages

• Infinite loops more likely
 Easy to forget loop vars
 Or get continuation

condition wrong

• Require more management
 Initialize the condition?
 Update the condition?

22

Start next video:
How to set up a

while loop

23

Setting up a while-loop

0. Situation is to do something until an event happens
1. Write the continuation condition
 Create var names as necessary to express condition
 May be easier to negate stop condition to get
continuation condition

2. Initialize loop vars (vars in loop condition) as necessary
3. In loop body: update loop vars

to possibly change loop condition from True to False

4. Write the rest of the loop body

24

Improve number guessing game

import random
min_num= 1
max_mum= 10
max_chances= 5
secret_num= random.randint(min_num, max_mum)
print("I have a number from "+str(min_num)+" to "+str(max_mum))
print("You have "+str(max_chances)+" chances to guess it")

User guesses until all chances used up or guessed correctly

25

1. Allow fixed number of guesses

For you to add later:
2. If a guess is wrong, tell player whether it was too high or too low.

