Recursion

(Re-introduction of this topic first

discussed over 3 weeks ago!)
(Sections 5.8-5.10)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

Recursion

Recursive Function:
A function that calls itself

An example in mathematics: factorial
* Non-recursive definition:
nl=n Xn-1 X ... X2 X]

\ J

(n—i)!

* Recursive detfinition:
n! =n (n-1)!
0'=1

Recursion

Recursive Function:
A function that calls itself

Two parts to every recursive function:
1. A simple case: can be solved easily
2. A complex case: can be made simpler (and simpler,
and simpler... until 1t looks like the simple case)

Russian Dolls!

Think about opening a set of Russian
dolls as a “problem.” Which is the
simpler case,

the case where the doll has a seam and
another doll inside of it, or

the case where the doll has no seam
and no doll inside of it?

Import russian

Russian Dolls!

Lol

Doll

name

hasSeam
innerDoll

e d

"Catherine"

Import russian

d1 = russian.Doll("Dmitry", None)
d2 = russian.Doll("Catherine", d1)

Global Space
dli| idi
"Dritry” d2 | id2

Lol

nName

Russian Dolls!

Doll

n Dmit r,yll

hasSeam| False

innerDoll | None

1d2

Nname

Doll

"Catherine"

hasSeam| True
innerDoll | id1

def open_doll(d):
""Input: a Russian Doll
Opens the Russian Doll d ™
print("My name is "+ d.name)
If d.hasSeam:
open inner doll
open_doll2(d.innerDoll)
else:
print("That's it!")

idx Doll
What ,woum\t(h name
fanction 100
hasSeam

innerDoll

def open_doll2(d):
""Input: a Russian Doll
Opens the Russian Doll d ™
print("My name is "+ d.name)
If d.hasSeam:
open inner doll
open_doll3(d.innerDoll)

else:
print("That's it!")
dx Doll
1d th
hat wou
o hasSeam
el innerDoll

def open_doll3(d):
""Input: a Russian Doll
Opens the Russian Doll d ™
print("My name is "+ d.name)
If d.hasSeam:
open inner doll
open_doll4(d.innerDoll)
else:
print("That's it!")

1dx

: Doll
Thi K just name
should e \
like the others: hasSeam
innerDoll

def open_doll(d):
""Input: a Russian Doll
Opens the Russian Doll d ™
print("My name is "+ d.name)
If d.hasSeam:
Inner = d.innerDoll
open_doll(inner)
else:
print(“That's it!")

idx Doll

name

hasSeam

innerDoll

Play with the code

Download modules russian.py, playWithDolls.py
Read playWithDolls.py; then run it as a script.

Modify last statement and run script again:

= open_doll(d3)

Modify last statement again and run script again :
= open_doll(d1)

Do you understand the result? Visit virtual
office/consulting hours if you have any questions.

15

[Start next video:
more examples|

16

Recursion: Examples

Russian Dolls

Blast Off!

Factorial

Count number of ‘e’s

Deblank — removing spaces from a string

17

Blast Off!

blast_off(5) # must be a non-negative int

— N W I O

BLAST OFF!

blast_off(0)
BLAST OFF!

18

Blast Off!

blast_off(5) # must be a non-negative int

What is the simple case
that can be solved easily?

* positiven>1
* nisl

BLASTOFFt [* nisO

— N W I O

blast_off(0)
BLAST OFF!

20

Blast Off!

def blast_off(n):
""Input: a non-negative int
Counts down from n to Blast-Offl

if (n==0):
print("BLAST OFF!")
else:
print(n)
blast_off(n-1)

21

A Mathematical Example: Factorial

 Non-recursive definition:
n'=n Xn-1 X ... X2 X1]
=n(n-1 X ... X2 X 1)

 Recursive definition:
n!=n(n-1)! forn>0 Recursive case
0!'=1 Base case

What happens 1f there 1s no base case?

Recursion

22

Factorial as a Recursive Function

def factorial(n):

Pre:n=0anint
If n==0:
 return

return n*factorial(n-1)

""Returns; factorial of n.

* n! =n (n-1)!
* 0!l=1

Base case(s)

Recursive case

What happens 1f there 1s no base case?

Recursion

23

Recursion vs Iteration

Recursion is provably equivalent to iteration
= Jteration includes for-loop and while-loop (later)

* Anything can do 1n one, can do in the other
But some things are easier with recursion

* And some things are easier with iteration

Will not teach you when to choose recursion

= That’s for upper level courses

We just want you to understand the technique

24

[Start next video:
divide & conquer]

25

Recursion is great for Divide and Conquer

Goal: Solve problem P on a piece of data

data

Idea: Split data into two parts and solve problem

data 1

data 2

Y

Solve Problem P

G

Y

Solve Problem P

/

Combine Answer!

28

Divide and Conquer Example

Count the number of 'e's in a string:

29

Divide and Conquer Example

Count the number of 'e's in a string:

30

Divide and Conquer

Goal: Solve really big problem P
Idea: Split into stmpler problems, solve, combine

3 Steps:
1. Decide what to do for simple cases
2. Decide how to break up the task

3. Decide how to combine your work

32

Three Steps for Divide and Conquer

1. Decide what to do on “small” data

= Some data cannot be broken up

= Have to compute this answer directly

2. Decide how to break up your data
= Both “halves” should be smaller than whole
= Often no wrong way to do this (next lecture)
3. Decide how to combine your answers

= Assume the smaller answers are correct

* Combining them should give bigger answer

33

Divide and Conquer Example

def num_es(s):
""Returns: # of 'e'sins
1. Handle small data
If s=="

" return 0

elif len(s) ==1:

- return1if s[0] =="¢e' else 0

2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

3. Combine the result
return left+right

35

Divide and Conquer Example

def num_es(s):
""Returns: # of 'e'sins
1. Handle small data
If s=="

" return 0

elif len(s) ==1:

- return1if s[0] =="¢e' else 0

36

Divide and Conquer Example

def num_es(s):
""Returns; # of 'e'sins
1. Handle small data
If s=="

" return 0

elif len(s) == 1:

- return1if s[0] =="¢e' else 0

“Short-cut” for

if s[0] =="e":
return 1

else:
return 0

37

Divide and Conquer Example

def num_es(s):
""Returns: # of 'e'sins

2. Break into two parts s[0] s|1:]
left = num_es(s[0])
right = num_es(s[1:]) p c|nj|n

Divide and Conquer Example

def num_es(s):
""Returns: # of 'e'sins

3. Combine the result
return left+right

s[0] s|l:
p n
0 2

39

Divide and Conquer Example

def num_es(s):
""Returns: # of 'e'sins
1. Handle small data)
Ifs=="

'~ return 0 > { Base Case]
elif len(s) ==1:

return1ifs[0] =='e'else 0 _/

2. Break into two parts)

left = num_es(s[0])

right = num_es(s[1]) > Recursive
Case

3. Combine the result
return left+right),

Exercise: Remove Blanks from a String

def deblank(s):
‘ """Returns: s but with its blanks removed""

1. Decide what to do on “small” data

= If 1t is the empty string, nothing to do

If s=="
" returns

= [f 1t 1s a single character, delete 1t if a blank

ifs=="" #Thereis a space here
" return™ # Empty string
else:

' returns

41

Exercise: Remove Blanks from a String

def deblank(s):

2. Decide how to break i1t up

left = deblank(s[0]) # A string with no blanks
right = deblank(s[1:]) # A string with no blanks

3. Decide how to combine the answers
return left+right # String concatenation

42

Putting it All Together

def deblank(s):
""Returns: s w/o blanks

if 5 ==")

\ return s

Handl 11 dat }
elif len(s) ==1: >£ andle small data

return"if s[0] ==""else s Y

[eft:deblank(S[O]) [Break the dat }
right = deblank(s[1:]) e

return left+right L Combine answers J

43

Putting it All Together

def deblank(s):
""Returns: s w/o blanks
ifs=="

' returns
elif len(s) ==1:
return"if s[0] ==""else s

left = deblank(s[0])
right = deblank(s[1])

return left+right

J
N

>{ Base Case }

4

Recursive
Case

|

44

Following the Recursion

deblank a b C
deblank deblank| a b C

. Q Q

stop (base case)
deblank | a deblank

g
stop (base case) @

Post-lecture exercise

e Visualize a call of deblank using Python Tutor
e Code in file deblank.py
e Pay attention to

= the recursive calls (call frames opening up),

* the completion of a call (sending the result to the
call frame “above”),

= and the resulting accumulation of the answer.

e Do this exercise before next lecture. Really!

59

