
Last Name: First Name: Cornell NetID, all caps:

CS 1110 Regular Prelim 1 Solutions March 2020

Last Name: First Name: Cornell NetID:

1. Short Answer. Write ERROR as shorthand for any error output.

(a) [4 points] What is printed out when the code
below is executed?

alist = [20, 20]

count = 1

for a in alist:

print(a)

count = count * 2

print(count)

20
20
4

(b) [4 points] What is printed out when the code
below is executed?

x = 1

y = 0

a = x >= 2 and (x/y) > 2

print("a is: " + str(a))

x = 16

b = x >= 2 and (x/y) > 2

print("b is:" + str(b))

a is: False
ERROR

(c) [4 points] What is printed out when the code

below is executed?

def some_fun():

print(i+6)

def more_fun(i):

print(i-1)

i = 14

j = 10

some_fun()

more_fun(j)

20
9

(d) [4 points] Let z be a string containing at least
one exclamation point. Write code that stores
in variable answer the part of z that starts
just after the first exclamation point in z.

One solution:

ep pos = z.index(’ !’)
answer = z[ep pos+1:]

Alternately,
answer = z[z.index(’ !’)+1:]
Other answers are also possible.

Page 2

Last Name: First Name: Cornell NetID:

2. [26 points] Circle objects have three attributes: x [an int]: the x-coordinate of its center;
y [an int]: the y-coordinate of its center; color [a non-empty str]: its color.

A constructor expression like Circle(5, 4, "blue") creates a new Circle object with x

attribute having value 5, y attribute having value 4, and color attribute having value "blue".

1 def move_helper(a,b):

2 value = a+b

3 if value < 0:

4 return 0

5 return value

6

7 def moveCircle(circle, move, coordinate):

8 if coordinate == 'x':

9 x_move = move_helper(circle.x, move)

10 circle.x = x_move

11 else: # if executed, include line no. in frame

12 y_move = move_helper(circle.y, move)

13 circle.y = y_move

14

15 c = Circle(5,7,"red")

16 moveCircle(c,-6,'x')

17 moveCircle(c,2,'y')

18 a = c.color

Diagram the execution of lines 1-18 in the areas below.

Page 3

Last Name: First Name: Cornell NetID:

3. String Slicing

(a) [8 points] A parenthetical phone number has parentheses around the first three digits
(the area code), three more numbers, a hyphen, and then the last four numbers. So
’(123)456-7890’ is a valid parenthetical phone number.

Here is the specification for a function that judges whether a string is a valid parenthetical
phone number.

def paren_phone_num(s):

"""Returns True if s is a valid parenthetical phone-number string,

False otherwise.

Precondition: s is a string.

Example inputs and outputs:

'(123)456-7890' --> True

'(123) 456-7890' --> False

'(123)456-7890-1' --> False

"""

The above docstring gives some test cases, as inputs and expected outputs (omitting ra-
tionales). Write four more distinct test cases, as input and expected outputs (no need
for assert equals statements), plus rationale. Each test case needs to be conceptually
distinct, for example, testing a different condition for a False rather than True return
value.

For this problem, we want each test to have a different path through the conditionals in
paren phone num. There are many different conditions on which a string could fail to
be valid, and you should target your test cases to make sure any conditionals are being
executed properly. Here are some sample cases we came up with:

Page 4

Last Name: First Name: Cornell NetID:

Input Output Reason

'1234567890' False Phone number without any formatting

'(123)456-' False Substring of valid phone number

'[123]456-7890' False Not parentheses around area code

'(123)456*7890' False Not a dash between last two sections

'(abc)456-7890' False Area code is not a number

'(123)xyz-7890' False Middle section is not a number

'(123)456-+$@!' False Final section is not a number

'(1t3)456-7890' False Area code has both letters and numbers

'' False Empty string

Page 5

Last Name: First Name: Cornell NetID:

(b) [16 points] Now, implement the function.

You may not use for-loops in this function, only string operations and methods.
You should instead use the string method isdigit(): for a string x, x.isdigit() returns
True if all the characters in x are digits, False otherwise.

def paren_phone_num(s):

"""Returns True if s is a valid parenthetical phone-number string,

False otherwise.

Precondition: s is a string.

Example inputs and outputs:

'(123)456-7890' --> True

'(123) 456-7890' --> False

'(123)456-7890-1' --> False

"""

Helpful position-numbering guide:

0 1 2 3 4 5 6 7 8 9 10 11 12 <- possible indices

(x x x) x x x - x x x x <- sample input template

Some solutions (other variants possible):

Check length and punctuation

if len(s) != 13 or s[0] != '(' or s[4] != ')' or s[8] != '-':

return False

Check the remaining stuff is numbers

return s[1:4].isdigit() and s[5:8].isdigit() and s[9:].isdigit()

Alternate implementation of the above

if not (s[1:4].isdigit() and s[5:8].isdigit() and s[9:].isdigit()):

return False

else:

return True

Alternate implementation of the above

if not s[1:4].isdigit() or not s[5:8].isdigit() or not s[9:].isdigit():

return False

else:

return True

Page 6

Last Name: First Name: Cornell NetID:

4. Objects and Functions

Consider a Person class with the attributes

• name: a string representing the name of this person

• friends: a (possibly empty) list of Person objects representing this person’s friends

(a) [10 points] Implement the following function according to the specifications. Your imple-
mentation must make effective use of range() in a for-loop.

Hint: Recall the Python keyword in, which returns True if a value is in a sequence, and
False otherwise. For example, 2 in [2, 3, 4] evaluates to True, but 5 in [2, 3, 4]

evaluates to False.

def common(f1, f2):

"""Returns: a string list containing the names of the people that are in

both Person list f1 and Person list f2.

Example: Let p1, p2, ..., p6 be Person objects. If f1 is the list

[p2, p3, p5] and f2 is the list [p3, p4, p6, p5], then common(f1, f2)

returns a list containing the names of p3 and p5 (not p3 and p5 themselves).

Precondition: f1 and f2 are each a nonempty list of Person objects.

"""

incommon= []

for i in range(len(f1)):

person= f1[i]

if person in f2:

incommon.append(person.name)

return incommon

Page 7

Last Name: First Name: Cornell NetID:

(b) [5 points] Implement function mutual friends according to the specifications below. Your
implementation must use function common from part (a) in a meaningful way. Assume
common has been correctly implemented. Pay attention to the specifications of both
mutual friends and common.

def mutual_friends(p1, p2):

"""Returns: a string list containing the names of the mutual friends of

Persons p1 and p2. If p1 and p2 have no mutual friends, return an empty

list.

Precondition: p1 and p2 are each a Person object.

"""

if p1.friends==[] or p2.friends==[]:

return []

return common(p1.friends, p2.friends)

Page 8

Last Name: First Name: Cornell NetID:

(c) [9 points] Implement the following function according to the specifications below. Your
implementation must use a “for-each” loop meaningfully, i.e., you cannot use
range() in your loop.

def nickname_friends(p):

"""Returns: the number of names modified. This function modifies

Person p's friends list such that the names longer than 5 characters will

will be truncated to the first 5 characters and a "u" is appended. Names 5

characters in length or shorter remain unchanged.

Example: If p has 3 friends named "Jonathan", "Benji", and "Tristan", then

their names will become "Jonatu", "Benji" (unchanged), and "Tristu",

respectively, and the function returns 2.

Precondition: p is a Person object with a nonempty friends list.

"""

changes= 0

for friend in p.friends:

if len(friend.name) > 5:

friend.name = friend.name[:5] + 'u'

changes += 1

return changes

Page 9

Last Name: First Name: Cornell NetID:

5. Testing and Debugging The function can get along uses the birth years of two people
to determine if they are compatible according to the logic of the Chinese zodiac. There are
multiple bugs in the code below, potentially spread out across multiple functions. Read the
specifications of each function carefully. On the next page, you will be asked to identify and
fix the existing bugs.

1 def can_get_along(year1, name1, year2, name2):

2 """Prints out compatibility.

3 Years are ints, which convert to signs.

4 """

5 a1 = chinese_zodiac(year1)

6 print(name1 + " is " + \

7 proper_grammar(a1[0]) + a1 + '.')

8 a2 = chinese_zodiac(year2)

9 print(name2 + " is " + \

10 proper_grammar(a2[0]) + a2 + '.')

11 if compatible(a1,a2):

12 print('They are a good match!')

13 print('They are not a good match.')

14

15 def chinese_zodiac(year):

16 """Returns: sign (as str) of year (int)

17 """

18

19 zodiac = ['Rat', 'Ox', 'Tiger',

20 'Rabbit', 'Dragon', 'Snake',

21 'Horse', 'Sheep', 'Monkey',

22 'Chicken', 'Dog', 'Pig']

23

24 y = year - 4.0

25 en = zodiac[y % len(zodiac)]

26 return en

27

28 def compatible(z1,z2):

29 """Returns: True if z1 and z2 compatible,

30 False otherwise.

31 'Rat', 'Dragon', and 'Monkey' are compatible;

32 as are 'Ox', 'Snake', 'Rooster';

33 as are 'Tiger', 'Horse', 'Dog';

34 as are 'Rabbit', 'Goat', 'Pig'.

35 """

36 match = [['Rat', 'Dragon', 'Monkey'],

37 ['Ox', 'Snake', 'Rooster'],

38 ['Tiger','Horse','Dog'],

39 ['Rabbit', 'Goat','Pig']]

40

41 for i in range(len(match)):

42 if z1 in match[i] or z2 in match[i]:

43 return True

44 return False

45

46 def proper_grammar(first_letter):

47 """Returns: 'a ' or 'an ', depending on

48 first_letter, a string consisting of a

49 single capital letter.

50 """

51 if is_vowel(first_letter):

52 return "an "

53 return "a "

54

55 def is_vowel(x):

56 """Returns: True if 'x' is a vowel,

57 False otherwise.

58

59 Preconditions:

60 `x` [str]: a string with length 1.

61 """

62 vowels = 'AEIOU'

63 if vowels.find(x) < len(vowels):

64 return True

65 return False

Page 10

Last Name: First Name: Cornell NetID:

(a) [4 points] First Bug: Consider the following call to can get along and the Python error
it triggers.

> > > can_get_along(1996,'Suzie', 1997,'Ahmad')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "zodiac_friends.py", line 5, in can_get_along

a1 = chinese_zodiac(year1)

File "zodiac_friends.py", line 25, in chinese_zodiac

en = zodiac[y % len(zodiac)]

TypeError: list indices must be integers or slices, not float

Below, explain where (line number) and why this error is triggered. And, fix the problem
by writing below how the code should be rewritten.

The variable y on line 24 has type float but is used to index the list zodiac; list indices
must be integers. Rewrite: y = year-4

(b) [4 points] Second Bug: After the first bug (above) is fixed, the call

> > > can_get_along(1996,'Suzie', 1997,'Ahmad')

should print out the following lines:

Suzie is a Rat.

Ahmad is an Ox.

[some other output]

Instead, it does the following.

> > > can_get_along(1996,'Suzie', 1997,'Ahmad')

Suzie is an Rat.

Ahmad is an Ox.

[some other output]

Below, explain where (line number) and why this error is triggered. And, fix the problem
by writing below how the code should be rewritten.

The condition in the if on line 63 is always True. Rewrite: if vowels.find(x) != -1:

or if vowels.find(x) >= 0:

Page 11

Last Name: First Name: Cornell NetID:

(c) [8 points] Third and Fourth Bugs: Consider the following call to can get along

> > > can_get_along(1989,'Ji-woo', 1995,'Liam')

Ji-woo is a Snake.

Liam is a Pig.

They are a good match!

They are not a good match.

We guarantee that Ji-woo and Liam are years of the Snake and the Pig, respectively.

Below, explain where (line numbers) and why the two problems are triggered. And, fix
the problems by writing below how the code should be rewritten.

Firstly ’Pig’ and ’Snake’ are not compatible, as can be seen from the docstring from
compatible; but line 42 is just looking for whether z1 or z2 is in some list in match, so
this will always be true.

Fix: or should be changed to and on line 42.

Secondly, can get along prints twice when compatible returns true because line 13 is
always executed. Fix: line 13 should be converted to:

else:

print('They are not a good match.')

Page 12

Last Name: First Name: Cornell NetID:

6. [1 point] Fill in your last name, first name, and Cornell NetID at the top of each
page.

Always do this! It prevents disaster in cases where a staple fails.

Page 13

