
Last Name: First: Netid:

CS 1110 Prelim 1 October 17th, 2019

This 90-minute exam has 6 questions worth a total of 100 points. Scan the whole test before starting.
Budget your time wisely. Use the back of the pages if you need more space. You may tear the pages
apart; we have a stapler at the front of the room.

It is a violation of the Academic Integrity Code to look at any exam other than your
own, to look at any other reference material, or to otherwise give or receive unautho-
rized help.

You will be expected to write Python code on this exam. We recommend that you draw vertical
lines to make your indentation clear, as follows:

def foo():
if something:

do something
do more things

do something last

You should not use loops or recursion on this exam. Beyond that, you may use any Python feature
that you have learned in class (if-statements, try-except, lists), unless directed otherwise.

Question Points Score

1 2

2 14

3 20

4 20

5 22

6 22

Total: 100

The Important First Question:

1. [2 points] Write your last name, first name, and netid, at the top of each page.



Last Name: First: Netid:

Reference Sheet

Throughout this exam you will be asked questions about strings and lists. You are expected to
understand how slicing works. In addition, the following functions and methods may be useful.

String Functions and Methods

Expression
or Method

Description

len(s) Returns: number of characters in s; it can be 0.
a in s Returns: True if the substring a is in s; False otherwise.
s.count(s1) Returns: the number of times s1 occurs in s
s.find(s1) Returns: index of the first character of the FIRST occurrence of s1 in s

(-1 if s1 does not occur in s).
s.find(s1,n) Returns: index of the first character of the first occurrence of s1 in s

STARTING at position n. (-1 if s1 does not occur in s from this position).
s.isalpha() Returns: True if s is not empty and its elements are all letters; it returns

False otherwise.
s.isdigit() Returns: True if s is not empty and its elements are all numbers; it returns

False otherwise.
s.isalnum() Returns: True if s is not empty and its elements are all letters or numbers;

it returns False otherwise.
s.islower() Returns: True if s is has at least one letter and all letters are lower case;

it returns False otherwise (e.g. 'a123' is True but '123' is False).
s.isupper() Returns: True if s is has at least one letter and all letters are uppper case;

it returns False otherwise (e.g. 'A123' is True but '123' is False).

List Functions and Methods

Expression
or Method

Description

len(x) Returns: number of elements in list x; it can be 0.
y in x Returns: True if y is in list x; False otherwise.
x.count(y) Returns: the number of times y occurs in x
x.index(y) Returns: index of the FIRST occurrence of y in x

(an error occurs if y does not occur in x).
x.index(y,n) Returns: index of the first occurrence of y in x STARTING at position n

(an error occurs if y does not occur in x).
x.append(y) Adds y to the end of list x.
x.insert(i,y) Inserts y at position i in list x, shifting later elements to the right.
x.remove(y) Removes the first item from the list whose value is y

(an error occurs if y does not occur in x).

The last three list methods are all procedures. They return the value None.

Page 2



Last Name: First: Netid:

2. [14 points total] Short Answer Questions.

(a) [4 points] Name the four types of variables we have seen in class. Describe each one.

(b) [3 points] What is a parameter? What is an argument? How are they related?

(c) [4 points] What is the difference between a function definition and a function call? Give
an example of each.

Page 3



Last Name: First: Netid:

(d) [3 points] Consider the code below. What is printed out when the code is executed?

x = 2
try:

print('Part A')
assert x < 0, 'Failure'
print('Part B')

except:
print('Part C')

print('Part D')

3. [20 points] Call Frames.

Consider the following (unspecified) function definitions.

1 def trimit(b):
2 a = b[0]
3 return b[a:-a]
4

5 def kneadit(a):
6 a[0] = a[-1]
7 b = trimit(a)
8 return b

Assume that b = [4,2,1] is a global variable referencing a list in the heap, as shown below.
On the next two pages, diagram the evolution of the call

a = kneadit(b)

Call Stack Global Space The Heap

b id1
id1

list

0 4
1 2
2 1

Diagram the state of the entire call stack for the function kneadit when it starts, for each line
executed, and when the frame is erased. If any other functions are called, you should do this
for them as well (at the appropriate time). This will require a total of eight diagrams, not
including the (pre-call) diagram shown.

You should draw also the state of global space and the heap at each step. You can ignore the
folders for the function definitions. Only draw folders for lists or objects. You are also allowed
to write “unchanged” if no changes were made to either global space or the heap.

Page 4



Last Name: First: Netid:

Call Stack Global Space The Heap

Page 5



Last Name: First: Netid:

Call Stack Global Space The Heap

Page 6



Last Name: First: Netid:

4. [20 points] String Slicing.

Implement the function specified below. You may need to use several of the functions and
methods on the reference page. Pay close attention to the precondition, as it will help
you (e.g. only numbers less than 1,000,000 are possible with that string length).

def valid_format(s):
"""Returns True if s is a valid numerical string; it returns False otherwise.

A valid numerical string is one with only digits and commas, and commas only
appear before every three digits. In addition, a valid string only starts
with a 0 if it has exactly one character.

Example: valid_format('12') is True
valid_format('apple') is False
valid_format('1,000') is True
valid_format('1000') is False
valid_format('10,00') is False
valid_format('0') is True
valid_format('012') is False

Precondition: s is a nonempty string with no more than 7 characters"""

Page 7



Last Name: First: Netid:

5. [22 points total] Testing and Debugging.

(a) [9 points] The function anglitime takes a string representing a unit of time (in hours and
minutes) and expands it into words with format 'hours, minutes'. One minute or one
hour is singular, while all other amounts (including zero) are plural. So anglitime('23:01')
returns 'twenty three hours, one minute', while anglitime('1:45') returns 'one hour,
forty five minutes'. The call anglitime('00:00') returns 'zero hours, zero minutes'.
There are at least three bugs in the code below. These bugs are potentially spread
across multiple functions. To help find the bugs, we have added several print statements
throughout the code, and show the results on the next page. Using this information as a
guide, identify and fix the three bugs on the next page. You should explain your fixes.

1 def anglitime(time):
2 """Returns full english word for time
3
4 See above for explanation of the results.
5
6 Precond: time a string 'hh:mm' or 'h:mm'
7 where h, m digits. mm are in 0..59."""
8 pos = time.find(':')
9 print('Colon at '+repr(pos)) # WATCH

10 hours = int(time[:pos])
11 print('Hrs are '+repr(hours)) # WATCH
12 minis = int(time[pos+1:])
13 print('Min are '+repr(minis)) # WATCH
14
15 suff = ' hours'
16 if hours == 1:
17 print('Singular hour') # TRACE
18 suff = ' hour'
19 hrword = wordify(hours)+suff
20 print('Hrs are '+repr(hrword)) # WATCH
21 suff = ' minutes'
22 if hours == 1:
23 print('Singular minute') # TRACE
24 suff = ' minute'
25 mnword = wordify(minis)+suff
26 print('Min are '+repr(mnword)) # WATCH
27 return hrword+', '+mnword
28
29
30 def tens(n):
31 """Returns word for the tens digit n
32
33 Ex: tens(3) returns 'thirty'
34
35 Precond: n an int, 2 <= n <= 9"""
36 names = ['twenty','thirty','forty',
37 'fifty','sixty','seventy',
38 'eighty','ninety']
39 print('tens n is '+repr(n)) # WATCH
40 return names[n-2]
41
42

43 def ones(n):
44 """Returns word for the (one digit) number n
45
46 Precond: n an int, 0 <= n <= 9"""
47 names = ['zero','one','two','three',
48 'four','five','six',
49 'seven','eight','nine']
50 print('ones n is '+repr(n)) # WATCH
51 return names[n]
52
53
54 def teens(n):
55 """Returns word for the teen number n
56
57 Ex: teens(10) returns 'ten'
58
59 Precond: n an int, 10 <= n <= 19"""
60 names = ['eleven','twelve','thirteen',
61 'fourteen','fifteen', 'sixteen',
62 'seventeen','eighteen','nineteen']
63 print('teens n is '+repr(n)) # WATCH
64 return names[n-10]
65
66
67 def wordify(n):
68 """Returns english word for a number
69
70 Ex: wordify(93) returns 'ninety three'
71
72 Precond: n an int, 0 <= n < 100"""
73 if n >= 20:
74 dig1 = n / 10
75 print('dig1 is '+repr(dig1)) # WATCH
76 dig2 = n % 10
77 print('dig2 is '+repr(dig2)) # WATCH
78 if digit2 == 0:
79 return tens(dig1)
80 return tens(dig1)+' '+ones(dig2)
81 elif n >= 10:
82 return teens(n)
83 else:
84 return ones(n)

Page 8



Last Name: First: Netid:

Tests:
> > > anglitime('9:01')
Colon at 1
Hrs are 9
Min are 1
ones n is 9
Hrs are 'nine hours'
ones n is 1
Min are 'one minutes'
'nine hours, one minutes'

> > > anglitime('05:13')
Colon at 2
Hrs are 5
Min are 13
ones n is 5
Hrs are 'five hours'
teens n is 13
Min are 'fourteen minutes'
'five hours, fourteen minutes'

> > > anglitime('24:00')
Colon at 2
Hrs are 24
Min are 0
dig1 is 2.4
dig2 is 4
tens n is 2.4
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "debug.py", line 19, in anglitime

hrword = wordify(hours)+suff
File "debug.py", line 80, in wordify

return tens(dig1)+' '+ones(dig2)
File "debug.py", line 40, in tens

return names[n-2]
TypeError: list indices must be integers

First Bug:

Second Bug:

Third Bug:

Page 9



Last Name: First: Netid:

(b) [8 points] On the previous page you saw three different tests for anglitime. Below, write
six more test cases for this function. By a test case, we just mean an input and an
expected output; you do not need to write an assert_equals statement. Each test case
needs to be different, which in this case means it executes a different flow through the code.
In addition, your tests must be different from the three test cases on the previous
page. For each test case, explain why it is different.

(c) [5 points] The function specified below is similar to wordify, except that it has a different
precondition. Using assert statements, enforce the precondition of this function. Error
messages are not required.

def wordify_minutes(mins):
"""Returns full english word for minutes mins

Precond: mins is a string 'mm' representing an int in 0..59"""

Page 10



Last Name: First: Netid:

6. [22 points total] Objects and Functions.

As you are probably aware, angles can be measured in either degrees or radians. There are 180◦

in π, making conversion between the two easy. However, there is more than one way to specify
degrees. We can specify degrees as decimals, like 75.3◦. Or we can break up that same values
in to degrees and minutes as follows: 75◦18′ (the ′ is for minutes).

There are 60 minutes to a degree, just as with minutes and hours. For heightened accuracy, we
can further divide each minute into seconds. However, for simplicity, we will stop at minutes
but all minutes to be decimals as follows: 75◦18.21′. To implement this, we create an Angle
class with the following attributes.

Attribute Meaning Invariant
degrees the angle degrees int value between 0 and 359 (inclusive)
minutes the minutes of the degree float value between 0 and 60 (excluding 60.0)

(a) [10 points] Implement the function below according to the specification.
Hint: You might want to convert the values to decimal degrees and back. In addition,
remember that degrees “wrap around” so that −15◦ is really 345◦, and 543◦ is really 183◦.

def subtract(angle1,angle2):
"""MODIFIES angle1 to be the result of subtracting angle2

This function is a procedure and does not return a value.

Example: If angle1 is 123 d 34.5 m and angle2 is 75 d 54.3 m
then subtract(angle1,angle2) changes angle1 to 47 d 40.2 m.

Preconditions: angle1 and angle2 are Angle objects"""

Page 11



Last Name: First: Netid:

(b) [12 points] The bisection of two angles is the angle in the middle of the arc created by
moving clockwise from the first angle. This is shown in the picture below.

(a) Traditional Bisection (b) Wrapped Bisection

a1
a2

0°

a1

a2

0°

You can compute the bisection by averaging (adding and dividing by 2) the two angles,
assuming that the first angle is larger. The tricky part is when the angles “wrap
around” so that the first angle is actually less (in terms of degrees) that than the second
angle. This is shown above on the right. To address this case, you have to do something
to make the first angle larger. The hints from the previous problem can help you here.
Using this guidance, implement the function below according to the specification.

def bisect(angle1,angle2):
"""Returns the angle bisecting sector from angle1 to angle2 (clockwise).

Example: If angle1 is 123 d 34.5 m and angle2 is 75 d 54.3 m
then bisect(angle1,angle2) returns 99 d 44.4 m, while (on the
other hand) bisect(angle2,angle1) returns 279 d 44.4 m.

Preconditions: angle1 and angle2 are Angle objects"""

Page 12


