
Last Name: First Name: Cornell NetID, all caps:

CS 1110 Regular Prelim 1 Solutions March 2018

Last Name: First Name: Cornell NetID:

1. [7 points] What’s the point?

Consider the Point3 class as it was defined in lecture, with 3 attributes: x, y, and z. Complete
the code so that it will create the following memory diagram. Do not change any of the code
provided, but (1) fill in the arguments to the incomplete call to mystery on line 18 and (2)
complete the body of the function mystery. The third point on the Heap can be initialized
with integers; it does not need to be a calculation involving the attributes of the first two
points.

1 import shapes

2
3 p1 = shapes.Point3(1,2,3)

4 p2 = shapes.Point3(4,5,6)

5
6 def mystery(a1, a2):

7 # TASK #2 complete definition of mystery

8 # use as many lines as you need

9
10
11
12
13
14
15
16 # TASK #1: complete the call to mystery

17
18 mystery(,)

Solution:
Task 2:

a3 = shapes.Point3(7,8,9)

a3.y = 0

return a3

Task 1:

mystery(p2, p1)

Page 2

Last Name: First Name: Cornell NetID:

2. Make the grade! A talented but morally questionable CS 1111 student has written a script
make my grade() that takes a list of lab grades, which is a list of ints, and changes them. First,
every grade that is 0 is turned into a 5. Then all grades are doubled.

(a) [6 points] Write three conceptually distinct test cases for function make my grade().

Test case #1
Input and expected output:

Rationale:

Test case #2
Input and expected output:

Rationale:

Test case #3
Input and expected output:

Rationale:

Page 3

Last Name: First Name: Cornell NetID:

Solution:

input: [1,2,3,4]

output: [2,4,6,8]

test doubling for non-0 numbers

input: [0,0]

output: [10,10]

test function for 0's only

input: [1,0,2,0]

output: [2,10,4,10]

test function for mixed 0's and non-0's OR standard test case

input: []

output: []

edge case, empty list

input: [-1,2,-3]

output: [-2,4,-6]

test negative numbers

input: [1.0,0.0,-5.0]

output: [2.0,10.0,-10.0]

test floats

input: [0,10,20]

output: [10,20,40]

test numbers that contain the digit 0 that are not 0

Page 4

Last Name: First Name: Cornell NetID:

(b) [7 points] Lab grades in CS 1111 are at most 10 points. Anything higher than 10 will
raise a red flag and alert the staff that something fishy is going on, as will too many 10s.

Since you are also talented but morally questionable, you decide to write a helper function
to be used by the previous script. It takes two lists (the original grades, original, and
the doctored grades, doctored) and an index i.

If the element at index i in doctored is larger than 10, and there are no more than three
10s in doctored, then replace the element at index i in doctored with a 10.
Otherwise, replace the element of doctored at index i with the corresponding score from
original.

Nothing is returned.

Implement the function as described, ignoring the need for any preconditions for now.

def check_grade(original, doctored, i):

Solution:

if doctored[i] > 10 and doctored.count(10) <= 3:

doctored[i] = 10

else:

doctored[i] = original[i]

(c) [2 points] Preconditions are often stated because if one violated them, the function would
raise an error.

What is one precondition you should add to the specification of the function above? In
other words, what condition (if violated) would cause your implementation to raise an
error, and what kind of error would that be? (You do not have to give the exact name of
the error; just describe it.)

Solution:
Valid index into both lists (IndexError)

Two lists of ints and/or floats (TypeError)

Lists of the same length (IndexError)

(OK if students cannot precisely name the Python error, but generally describe it.)

Page 5

Last Name: First Name: Cornell NetID:

3. Come on, get happy!

(a) [11 points] What does the Call Stack look like?

The Dutch version of “Happy Birthday” says “Long shall he/she live in glory”. The first
half of the sentence is repeated 3 times, then the second half of the song is repeated 3
times. Below on the left is the (error-free) code which prints out this Dutch song. On the
right, draw the full call stack as it would look when line 5 has just been executed for
the second time. Include crossed-out frames.

1 def he():

2 print("hij")

3
4 def she():

5 print("ze")

6
7 def live_long(is_female):

8 print("Lang zal")

9 if is_female:

10 she()

11 else:

12 he()

13 print("leven")

14
15 def in_glory():

16 print("In de gloria")

17
18 def song(is_female):

19 """ Happy Birthday in Dutch"""

20 for verse in list(range(3)):

21 live_long(is_female)

22 for verse in list(range(3)):

23 in_glory()

24
25 song(True)

Solution:

Page 6

Last Name: First Name: Cornell NetID:

(b) [1 point] What went wrong?

Below on the left is code with one or more errors. Below on the right is the error message
that is printed when the code is run. Fix the one line of code that led to the error message
in the traceback. (Fix only the error reported in this traceback.)

1 def happy_holiday(holiday):

2 print("Happy "+holiday)

3
4 def dear():

5 print("Dear "+name)

6
7 def to_you():

8 print("to "+"you")

9
10 def line_with_name(name):

11 happy_birthday(name)

12 dear(name)

13
14 def basic_line(holiday):

15 happy_holiday(holiday)

16 to_you()

17
18 def song():

19 basic_line("Birthday")

20 basic_line("Birthday")

21 line_with_name("Teo")

22 basic_line(200)

23
24 song()

Traceback (most recent call last):

File "happy_error.py", line 24, in <module>

song()

File "happy_error.py", line 21, in song

line_with_name("Teo")

File "happy_error.py", line 11, in line_with_name

happy_birthday(name)

NameError: name 'happy_birthday' is not defined

Solution:
Change line 11 to call happy holiday. (Not OK to change the function name in line 1,
because line 14 calls it.)

Page 7

Last Name: First Name: Cornell NetID:

4. [21 points] Complete edit(instring, c1, c2) below so that it obeys the following specifica-
tion. (Don’t include a docstring.)

Preconditions: instring is a (possibly empty) string; c1 and c2 are two different strings, both
of length 1.

If instring does not contain any c1s, return False

if instring contains 2 or more c1s,
or contains exactly 1 c1 but no c2,
or contains exactly 1 c1 and a c2 before the c1, return the int 0.

Otherwise, return a version of instring where the text between c1 and the first c2 after it,
inclusive, has been removed.

Examples:
instring c1 c2 what to return

------------------------- ------ ------- ----------------

"exam" '(' ')' False

"B. (Bats) Wayne, M. (Prez)" '(' ')' 0

"(:" '(' ')' 0

"1) CS1110 (Intro)" '(' ')' 0

"T'Challa,(B.P.)x yz" '(' ')' "T'Challa,x yz"

"a.().a" '(' ')' "a..a"

"a () a" 'a' 'b' 0

def edit(instring, c1, c2):

Solution:
Two (similar) solutions:

def edit(instring, c1, c2):

BEGIN REMOVE

c1count = instring.count(c1)

c2count = instring.count(c2)

if c1count == 0:

return False

elif c1count > 1:

return 0

else:

c1count == 1

c1_pos = instring.index(c1)

c2_pos = instring.index(c2) # position of 1st c2

if c2count == 0 or c2_pos < c1_pos:

return 0

#c1count === 1, there's an c2 after c1 but not before

return instring[:c1_pos] + instring[c2_pos+1:]

Page 8

Last Name: First Name: Cornell NetID:

def edit2(instring, c1, c2):

less readable

c1count = instring.count(c1)

c2count = instring.count(c2)

if c1count == 0:

return False

The order of these matters ...

elif c1count > 1 or c2count == 0 or (instring.find(c2) < instring.find(c1)):

return 0

else:

return instring[:instring.index(c1)] + instring[instring.find(c2)+1:]

Page 9

Last Name: First Name: Cornell NetID:

5. [8 points] Recall from A2 that Player objects have an int attribute holdings. So, if p were a
variable storing (the identifier of) a Player object, we could access the value of its holdings

atttribute with the expression p.holdings.

Suppose another class, Team, has been defined, where each Team object has an attribute plist

that is a non-empty list of Player objects.

Imagine someone asks us to write a function switch(t1, t2, i1, i2) with the following
specification.

Preconditions: t1 and t2 are Teams. (They are allowed to be the same Team.)
i1 is a valid index for t1’s list of Players, and i2 is a valid index for t2’s list of Players.

Swaps the holdings of the Player at index i1 in t1’s list of players with the holdings of
the Player at index i2 of t2’s list of players. Does not return anything.

Is it possible to write such a function?

• If yes, write the body of the function below.

• If not, explain why this is not possible, in 3-5 sentences, in the space below. You may use
folder/call-frame diagrams in your explanation. And, write a line of code that would store
in a variable temp the holdings of the Player at index 0 of the player list of Team t1.

Hints: You may wish to draw object diagrams to make sure you understand the setup of
the classes and lists involved. Try writing the function to decide whether or not it can be
implemented.

def switch(t1, t2, i1, i2):

Solution:

temp = t1.plist[i1].holdings

t1.plist[i1].holdings = t2.plist[i2].holdings

t2.plist[i2].holdings = temp

Alternately,

temp = t2.plist[i2].holdings

t2.plist[i2].holdings = t1.plist[i1].holdings

t1.plist[i1].holdings = temp

Page 10

Last Name: First Name: Cornell NetID:

6. [5 points] A Lannister always pays his (or her) debts.

You are asked to complete a function (on the next page) that creates a payment plan for an
amount owed. The amount owed is divided into a number of installments. After the first
payment, a fee is assigned. The fee is a percentage of the installment amount and increases
each month: no fee in the first month, 10% of the installment in the second month, 20% of the
installment in the third month, and so on.

Sample output for a few test cases are shown below:

>>> payment_plan(1000,1)

Each installment = $1000.0
#1: 1000.0

Total fees charged: $0.0

>>> payment_plan(1000,2)

Each installment = $500.0
#1: 500.0

#2: 550.0

Total fees charged: $50.0

>>> payment_plan(1000,3)

Each installment = $333.33
#1: 333.33

#2: 366.67

#3: 400.0

Total fees charged: $100.0

>>> payment_plan(1000,4)

Each installment = $250.0
#1: 250.0

#2: 275.0

#3: 300.0

#4: 325.0

Total fees charged: $150.0

The print statements are already in the code and require you to create and give correct values
to the variables installment, curr payment, and total fees.

Page 11

Last Name: First Name: Cornell NetID:

1 def payment_plan(amount, num_payments):

2 """prints out a payment plan

3 amount: total amount owed (a float)

4 num_payments: # of installments (an int)

5
6 After the first payment, a fee is is assigned.

7 The fee is a percentage of the installment amount and increases each month:

8 - no fee in month 0

9 - 10% of the installment in month 1

10 - 20% of the installment in month 2, etc.

11
12 The function also prints out the total amount of fees one will have paid at the end

13 of the payment plan."""

14
15 # STUDENTS: initialize variable installment here with an assignment statement

16
17
18 print("Each installment = $"+str(round(installment,2)))
19
20 # STUDENTS: Initialize accumulator variable total_fees here with an assignment

21
22
23
24 # which_payment will have values 0 then 1 then 2...

25 # DO NOT CHANGE THE FOR-LOOP STRUCTURE GIVEN

26 for which_payment in list(range(num_payments)):

27 # STUDENTS: Compute curr_payment and create/update other variables as appropriate

28
29
30
31
32
33
34 print("#"+str(which_payment+1)+": "+str(round(curr_payment,2)))

35
36 print("Total fees charged: $"+str(total_fees))

Solution:
line 16:

installment = amount/num_payments

line 21:

total_fees = 0.0

lines 28 and following

Page 12

Last Name: First Name: Cornell NetID:

fee = installment * (0.1 * which_payment)

curr_payment = installment + fee

total_fees = total_fees + fee

7. [1 point] Fill in your last name, first name, and Cornell NetID at the top of each
page.

Solution:
Always do this! It prevents disaster in cases where a staple fails.

Page 13

