
Last Name: First: Netid:

CS 1110 Prelim 1 October 11th, 2018

This 90-minute exam has 6 questions worth a total of 100 points. Scan the whole test before starting.
Budget your time wisely. Use the back of the pages if you need more space. You may tear the pages
apart; we have a stapler at the front of the room.

It is a violation of the Academic Integrity Code to look at any exam other than your
own, to look at any other reference material, or to otherwise give or receive unautho-
rized help.

You will be expected to write Python code on this exam. We recommend that you draw vertical
lines to make your indentation clear, as follows:

def foo():
if something:

do something
do more things

do something last

You should not use loops or recursion on this exam. Beyond that, you may use any Python feature
that you have learned in class (if-statements, try-except, lists), unless directed otherwise.

Question Points Score

1 2

2 16

3 22

4 20

5 20

6 20

Total: 100

The Important First Question:

1. [2 points] Write your last name, first name, and netid, at the top of each page.

Last Name: First: Netid:

Reference Sheet

Throughout this exam you will be asked questions about strings and lists. You are expected to
understand how slicing works. In addition, the following functions and methods may be useful.

String Functions and Methods

Expression
or Method

Description

len(s) Returns: number of characters in s; it can be 0.
a in s Returns: True if the substring a is in s; False otherwise.
s.count(s1) Returns: the number of times s1 occurs in s
s.find(s1) Returns: index of the first character of the FIRST occurrence of s1 in s

(-1 if s1 does not occur in s).
s.find(s1,n) Returns: index of the first character of the first occurrence of s1 in s

STARTING at position n. (-1 if s1 does not occur in s from this position).
s.isalpha() Returns: True if s is not empty and its elements are all letters; it returns

False otherwise.
s.isdigit() Returns: True if s is not empty and its elements are all numbers; it returns

False otherwise.
s.isalnum() Returns: True if s is not empty and its elements are all letters or numbers;

it returns False otherwise.
s.islower() Returns: True if s is has at least one letter and all letters are lower case;

it returns False otherwise (e.g. 'a123' is True but '123' is False).
s.isupper() Returns: True if s is has at least one letter and all letters are uppper case;

it returns False otherwise (e.g. 'A123' is True but '123' is False).

List Functions and Methods

Expression
or Method

Description

len(x) Returns: number of elements in list x; it can be 0.
y in x Returns: True if y is in list x; False otherwise.
x.count(y) Returns: the number of times y occurs in x
x.index(y) Returns: index of the FIRST occurrence of y in x (an error occurs if y

does not occur in x).
x.index(y,n) Returns: index of the first occurrence of y in x STARTING at position n

(an error occurs if y does not occur in x).
x.append(y) Adds y to the end of list x.
x.insert(i,y) Inserts y at position i in list x, shifting later elements to the right.
x.remove(y) Removes the first item from the list whose value is y. (an error occurs if y

does not occur in x).

The last three list methods are all procedures. They return the value None.

Page 2

Last Name: First: Netid:

2. [16 points total] Short Answer Questions.

(a) [5 points] What is the definition of a type in Python? List at least four examples of types
built into Python.
A type is a collection of values together with the operations on them. The four basic types
are int, float, bool, and str. However, we would also allow list or tuple.

(b) [4 points] What is the definition of a type cast? What is the difference between a widening
cast and a narrowing cast? Give an example of each.
A type cast is the conversion of a value from one type to another. A widening cast converts
the type from one with less information to more information (e.g. int to float). An example
is float(2) or 3/2.0. A narrowing cast is the reverse – from more information to less. An
example is int(2.3).

(c) [4 points] Explain the purpose of preconditions in a function specification. Why are they
necessary in Python?
Preconditions are a promise that our function will work properly if the arguments all satisfy
the restrictions listed. They are necessary because we cannot possibly guarantee that our
function will work on any arbitrary argument. For example, we cannot guarantee that a
math function like cos will work on a string, or on a list. So we only guarantee the function
on those arguments that satisfy the precondition.

Page 3

Last Name: First: Netid:

(d) [3 points] Consider the code below. Is the code correct or will it produce an error? If it is
correct, what value is put in the variable y? If it is not correct, explain the error.

import math

def foo(math):
return math.cos(0)

y = foo(3)

It produces an error. The call to math.cos will fail because foo has a parameter named
math and Python will use that instead of the module math. Hence math is the number 3,
and it does not contain a function called cos.

3. [22 points] Call Frames.

Consider the following function definitions.

1 def back_to_front(p):
2 """Returns: copy of p with ends swapped
3 Precondition: p a list, len(p) >= 2"""
4 y = p[-1]
5 x = add_front(p[1:-1],y)
6 x.append(p[0])
7 return x
8

9 def add_front(p,y):
10 """Appends y to front of p
11 Precondition: p a list, y anything."""
12 p.insert(0,y)
13 return p

This function returns a copy of a list with the first and last elements swapped.

Assume that q = [4.1,2.0, 3.5] is a global variable referencing a list in heap space, as shown
on the next page. On the next two pages, diagram the evolution of the call

p = back_to_front(q)

Diagram the state of the entire call stack for the function back_to_front when it starts, for
each line executed, and when the frame is erased. If any other functions are called, you should
do this for them as well (at the appropriate time). This will require a total of nine diagrams,
not including the (pre-call) diagram shown.

You should draw also the state of global space and heap space at each step. You can ignore the
folders for the function definitions. Only draw folders for lists or objects. You are also allowed
to write “unchanged” if no changes were made to either global or heap space.

Page 4

Last Name: First: Netid:

Call Frames Global Space Heap Space

q id1
id1

list

0 4.1
1 2.0

q id1

q id1

2 3.5

p id1

back_to_front

y 3.5
5 id1

list

0 4.1
1 2.0
2 3.5

id1
list

0 4.1
1 2.0
2 3.5

p id1

back_to_front

y 3.5
5

p id2

add_front

y 3.5
12

id2
list

0 2.0

q id1
id1

list

0 4.1
1 2.0
2 3.5

p id1

back_to_front

y 3.5
5

p id2

add_front

y 3.5
13

id2
list

0 3.5
1 2.0

q id1
p id1

back_to_front 4 id1
list

0 4.1
1 2.0
2 3.5

Page 5

Last Name: First: Netid:

Call Frames Global Space Heap Space

q id1
id1

list

0 4.1
1 2.0
2 3.5

p id1

back_to_front

y 3.5
5

p id2

add_front

RETURN

y 3.5
id2

id2
list

0 3.5
1 2.0

q id1
id1

list

0 4.1
1 2.0
2 3.5

p id1

back_to_front

y 3.5
x id2

6

p id2

add_front

RETURN

y 3.5
id2

id2
list

0 3.5
1 2.0

q id1
id1

list

0 4.1
1 2.0
2 3.5

p id1

back_to_front

y 3.5
x id2

7 id2
list

0 3.5
1 2.0
2 4.1

q id1
id1

list

0 4.1
1 2.0
2 3.5

p id1

back_to_front

RETURN

y 3.5
x id2 id2

id2
list

0 3.5
1 2.0
2 4.1

q id1
id1

list

0 4.1
1 2.0
2 3.5

p id1

back_to_front

RETURN

y 3.5
x id2 id2

id2
list

0 3.5
1 2.0
2 4.1

p id2

Page 6

Last Name: First: Netid:

4. [20 points] String Slicing.
If you have ever downloaded DLC for a game, or redeemed a coupon online, you know that they
are often defined as groups letters and numbers separated by dashes. The simplest variation
has just one dash and groups its letters in numbers in blocks of four, like this: K97J-FTRE.
Implement the function below, which takes an arbitrary string and determines whether it looks
like a coupon code. You will need to use several of the functions and methods on the reference
sheet. Pay close attention to the specifications of these methods and functions. You
may not use loops.

def is_code(value):
"""Returns: True if value is a coupon code, otherwise False

A code has the form XXXX-XXXX where XXXX is four characters
that are each either an upper case letter or a number.

Example: is_code('K97J-FTRE') is True
is_code('K97J-9876') is True
is_code('K97J') is False
is_code('K97J-FTRE-9876') is False
is_code('k97J-fTRe') is False
is_code('K97J8-FTREK') is False

Precondition: value is a string"""
Verify just one dash
if value.count('-') != 1:

return False

Split into two blocks
pos = value.find('-')
block1 = value[:pos]
block2 = value[pos+1:]

Verify the block size
if len(block1) != 4 or len(block2) != 4:

return False

All numbers or alphanumeric upper case
good1 = block1.isdigit() or (block1.isupper() and block1.isalnum())
good2 = block2.isdigit() or (block2.isupper() and block2.isalnum())
return good1 and good2

Page 7

Last Name: First: Netid:

5. [20 points total] Testing and Debugging.

(a) [10 points] Consider the functions below. The function valid_date takes a string of the
form ’month/day/year’ and determines whether it is a valid date. It is leap-year aware so
that valid_date('2/29/2004') is True, while valid_date('2/29/2003') is False. Note
that a year is a leap-year if it is divisible by 4, but centuries are only leap years if they are
divisible by 400 (so 2000 was a leap year, but 2100 is not).
To simplify the code, the precondition of the function valid_date specifies that the string
date must have two slashes. The month part before the first slash is 1 or 2 numbers, as is
the day part between the two slashes. The year part after the last slash is 4 numbers. So
'2/29/2004' satisfies the precondition, but 'a/2/20045' violates it.
There are at least three bugs in the code below. These bugs are across all functions
and are not limited to a single function. To help find the bugs, we have added several
print statements throughout the code. The result of running the code with these print
statements shown on the next page. Using this information as a guide, identify and fix the
three bugs on the next page. You should explain your fixes.

Hint: Pay close attention to the specifications. You may not be able to express your fixes
as a single line of code. If you have to make changes to multiple lines to solve a single
problem, just describe your changes instead of writing the complete code.

1 def leap_year(year):
2 """Returns: True a leap year; else False
3
4 Precondition: year is a positive int"""
5 if year % 4 != 0:
6 print('Not leap year') # TRACE
7 return False
8 if year % 100 == 0 and year % 400 != 0:
9 print('Not leap century') # TRACE

10 return False
11 print('Leap year') # TRACE
12 return True
13
14
15 def num_days(month,year):
16 """Returns: number of days in month
17
18 Example: days_in_month(2,2003) is 28, but
19 days_in_month(2,2004) is 29.
20
21 Precondition: month is an int 1..12
22 year is a positive int"""
23 # List of days for each month
24 days=[31,28,31,30,31,30,31,31,30,31,30,31]
25 if leap_year(year):
26 days[1] = 29 # Change Feb
27 result = days[month]
28 print('Month '+str(month)) # WATCH
29 print(' has '+str(result)+' days') # WATCH
30 return result
31
32

33 def valid_date(date):
34 """Returns: True if date is an actual date
35
36 Example: valid_date('2/29/2004') is True
37 but valid_date('2/29/2003') is False
38
39 Precondition: date is a string month/day/year
40 where month and day are 1 or 2 numbers each
41 and year is four numbers"""
42 # Split up string
43 pos1 = date.find('/')
44 print('First / at '+str(pos1)) # WATCH
45 pos2 = date.find('/',pos1+3)
46 print('Second / at '+str(pos2)) # WATCH
47
48 # Turn month, day, and year into ints
49 month = int(date[:pos1])
50 print('Month is '+str(month)) # WATCH
51 day = int(date[pos1+1:pos2])
52 print('Day is '+str(day)) # WATCH
53 year = int(date[pos2+1:])
54 print('Year is '+str(year)) # WATCH
55
56 if day < 1 or day > num_days(month,year):
57 print('Day out of range') # TRACE
58 return False
59 if month < 1 or month > 12:
60 print('Month out of range') # TRACE
61 return False
62 return True
63
64

Page 8

Last Name: First: Netid:

Tests:

> > > valid_date('2/29/2003')
First / at 1
Second / at 4
Month is 2
Day is 29
Year is 2003
Not leap year
Month 2
has 31 days

True

> > > valid_date('2/2/2000')
First / at 1
Second / at -1
Month is 2
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "dates.py", line 51, in valid_date

day = int(date[pos1+1:pos2])
ValueError: invalid literal for int() with

base 10: '2/200'

> > > valid_date('13/10/2017')
First / at 2
Second / at 5
Month is 13
Day is 10
Year is 2017
Not leap year
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "dates.py", line 56, in valid_date

if day < 1 or day > num_days(month,year):
File "dates.py", line 27, in num_days

result = days[month]
IndexError: list index out of range

First Bug:

The bug for the first test is in num_days. List
indices start at 0, not 1. Therefore, we need to
change the list access at Line 27 to:

result = days[month-1]

Second Bug:

The bug for the second test is in valid_date.
While it crashes at line 51, the problem is that
the value for pos2 is wrong (No \ was found).
We need to change the method call at Line 45 to:

pos2 = date.find('/',pos1+1)

Third Bug:

The bug for the third test is again in valid_date.
While it crashes in num_days, a month value of
13 violates the precondition in this function. To
solve this problem, we need to check the month
before we check the day. This can be fixed by
swapping the order of the two if-statements.

There is a fourth bug we missed. The precon-
dition of valid_date allows a year of '0000'.
However, num_days requires that the year be
positive, and you assert this in Part C. You can-
not change specifications to fix bugs, so the fix
needs an addition if-statement in valid_date.

Page 9

Last Name: First: Netid:

(b) [7 points] On the previous page you saw three different tests for valid_date. Below, write
seven more test cases for this function. By a test case, we just mean an input and an
expected output; you do not need to write an assert_equals statement. For each test case
explain why it is significantly different from the others. The test cases need to be different
from each other and different from the three test cases on the previous page.

Input Output Reason

'2/29/2004' True February 29th in leap year

'1/12/2003' True One-digit month, two-digit day

'12/1/2003' True Two-digit month, one-digit day

'12/12/2003' True Two-digit month and day

'0/12/2003' False Zeroed month

'12/0/2003' False Zeroed day

'6/31/2003' False Day 31 in a 30 day month (e.g. June)

There are many different possible answers to this question. Above are some of test cases
we were thinking of. If you had (at least) seven test cases that were close to the ones
below, you got full credit. Otherwise, we checked if your test cases were different enough,
and awarded you 1 point for each test. Keep in mind that the examples on the previous
page are: February 29th outside leap year, one-digit month and day, and month greater
than 12.
There are a lot of leap year variations tha you can test as well. But leap year tests are not
interesting or different if the date is not February 29th.

(c) [3 points] Below is the header and specification for the function num_days. Using assert
statements, enforce the precondition of this function.

def num_days(month,year):
"""Returns: number of days in month

Precondition: month is an int 1..12
year is a positive int"""

assert type(month) == int
assert 0 < month and month < 13
assert type(year) == int
assert year > 0

Page 10

Last Name: First: Netid:

6. [20 points total] Objects and Functions.

You saw the Time class in lab. However, to properly keep track of time, we also need the
timezone. You are probably familiar with the main US timezones: Eastern, Central, Mountain,
and Pacific. However, those names are not very helpful when we want to write code. So instead,
timezones are expressed as an offset of UTC (Universal Coordinated Time). Eastern Standard
Time is UTC-4, or four hours behind UTC. New Zealand Standard Time is UTC+12 or 12
hours ahead of UTC.

To change from one time zone to another, we usually do it in a two step process. We subtract
the offset of the old timezone to shift to UTC. Then we add the offset of the new timezone to
shift it again. For example, suppose we have 09:45 in Eastern (UTC-4) and we want to know
the time in New Zealand. We add 4 hours to move to UTC, giving us 13:45. As New Zealand
is UTC+12, we add 12 hours again to get 01:45 the next day.

Not all timezones are offset by a full hour. Indian Standard Time is UTC+5:30. Therefore, if
want to add a timezone offset to the Time class, we should express it in minutes. The Time class
now has the following attributes.

Attribute Meaning Invariant
hour the hour of the day int value between 0 and 23 (inclusive)
minute the minute of the hour int value between 0 and 59 (inclusive)
zone the offset from UTC in minutes int value (no limitations)

(a) [8 points] Implement the function below according to the specification
Hint: This problem is a lot easier if you convert the time to minutes as you did in the lab.

def is_before(time1,time2):
"""Returns: True if time1 happens before time2, False otherwise.
It returns False if time1 and time2 are the same time.

Example: If time1 is 10:30 in zone -240 (Eastern) and time2 is 15:20
in zone +60 (Central Europe), then is_before(time1,times) is False.

Preconditions: time1 and time2 are Time objects"""

Compute the minutes in UTC
min1 = time1.hour*60+time1.minute-time1.zone
min2 = time2.hour*60+time2.minute-time2.zone

Compare minutes
return min1 < min2

Page 11

Last Name: First: Netid:

(b) [12 points] Implement the function below according to the specification
Hint: The tricky part is satisfying the invariants. You may find // and % to be useful.

def shift_tz(time,tz):
"""MODIFIES time to use the timezone tz instead.

In addition to setting the timezone attribute in time, this function
modifies the time and minutes to be the correct time in the new timezone.

Example: Suppose time is 16:40 in zone -240 (Eastern) and tz is +210
(Iran Standard Time). Then shift_tz(time,tz) modies time to be 00:10
with timezone +210.

Precondition: time is a Time object, tz is an int"""

Find the timezone difference
diff = tz-time.zone

Add the difference to the time
minutes = (time.minute+diff) % 60
carry = (time.minute+diff) // 60
hours = (time.hour+carry) % 24

Reset the object
time.hour = hours
time.minute = minutes
time.zone = tz

Page 12

